121 #ifndef __vmath_Header_File__ 122 #define __vmath_Header_File__ 131 #ifdef VMATH_NAMESPACE 132 namespace VMATH_NAMESPACE
137 #define M_PI 3.14159265358979323846 140 #define DEG2RAD(x) ((x * M_PI) / 180.0) 144 #define EPSILON epsilon 220 template<
class FromT>
222 : x(static_cast<T>(src.x)), y(static_cast<T>(src.y))
231 template<
class FromT>
234 x =
static_cast<T
>(rhs.
x);
235 y =
static_cast<T
>(rhs.
y);
258 assert(n >= 0 && n <= 1);
273 assert(n >= 0 && n <= 1);
462 return !(*
this == rhs);
482 return (T) std::sqrt(x * x + y * y);
504 return x * x + y * y;
519 return (*
this) + (r - (*this)) * fact;
537 operator const T*()
const 539 return (
const T*)
this;
549 friend std::ostream& operator<<(std::ostream& lhs, const Vector2<T>& rhs)
551 lhs <<
"[" << rhs.x <<
"," << rhs.y <<
"]";
560 std::ostringstream oss;
665 : x(nx), y(ny), z(nz)
674 : x(src.x), y(src.y), z(src.z)
682 template<
class FromT>
684 : x(static_cast<T>(src.x)), y(static_cast<T>(src.y)), z(static_cast<T>(src.z))
705 template<
class FromT>
708 x =
static_cast<T
>(rhs.
x);
709 y =
static_cast<T
>(rhs.
y);
710 z =
static_cast<T
>(rhs.
z);
723 assert(n >= 0 && n <= 2);
741 assert(n >= 0 && n <= 2);
841 return x * rhs.
x + y * rhs.
y + z * rhs.
z;
850 return Vector3<T>(y * rhs.
z - rhs.
y * z, z * rhs.
x - rhs.
z * x, x * rhs.
y - rhs.
x * y);
958 return !(*
this == rhs);
978 return (T) std::sqrt(x * x + y * y + z * z);
990 return x * x + y * y + z * z;
1019 T nx = c * e * x - c * f * y + d * z;
1020 T ny = (a * f + b * d * e) * x + (a * e - b * d * f) * y - b * c * z;
1021 T nz = (b * f - a * d * e) * x + (a * d * f + b * e) * y + a * c * z;
1039 return (*
this) + (r - (*this)) * fact;
1059 operator const T*()
const 1061 return (
const T*)
this;
1071 friend std::ostream& operator<<(std::ostream& lhs, const Vector3<T> rhs)
1073 lhs <<
"[" << rhs.x <<
"," << rhs.y <<
"," << rhs.z <<
"]";
1082 std::ostringstream oss;
1170 : x(0), y(0), z(0), w(0)
1182 : x(nx), y(ny), z(nz), w(nw)
1191 : x(src.x), y(src.y), z(src.z), w(src.w)
1199 template<
class FromT>
1201 : x(static_cast<T>(src.x)), y(static_cast<T>(src.y)), z(static_cast<T>(src.z)), w(static_cast<T>(src.w))
1206 : x(src.x), y(src.y), z(src.z), w(w)
1209 template <
typename FromT>
1211 : x(static_cast<T>(src.x)), y(static_cast<T>(src.y)), z(static_cast<T>(src.z)), w(static_cast<T>(w))
1232 template<
class FromT>
1235 x =
static_cast<T
>(rhs.
x);
1236 y =
static_cast<T
>(rhs.
y);
1237 z =
static_cast<T
>(rhs.
z);
1238 w =
static_cast<T
>(rhs.
w);
1251 assert(n >= 0 && n <= 3);
1271 assert(n >= 0 && n <= 3);
1392 return !(*
this == rhs);
1413 return Vector4<T>(x + rhs, y + rhs, z + rhs, w + rhs);
1422 return Vector4<T>(x - rhs, y - rhs, z - rhs, w - rhs);
1431 return Vector4<T>(x * rhs, y * rhs, z * rhs, w * rhs);
1440 return Vector4<T>(x / rhs, y / rhs, z / rhs, w / rhs);
1502 return (T) std::sqrt(x * x + y * y + z * z + w * w);
1526 return x * x + y * y + z * z + w * w;
1541 return (*
this) + (r - (*this)) * fact;
1561 operator const T*()
const 1563 return (
const T*)
this;
1573 if (w == 0 || w == 1)
1576 const T invW = 1.0 / w;
1577 return Vector3<T>(x * invW, y * invW, z * invW);
1587 friend std::ostream& operator<<(std::ostream& lhs, const Vector4<T>& rhs)
1589 lhs <<
"[" << rhs.
x <<
"," << rhs.y <<
"," << rhs.z <<
"," << rhs.w <<
"]";
1598 std::ostringstream oss;
1631 for (
int i = 0; i < 9; i++)
1632 data[i] = (i % 4) ? 0 : 1;
1641 std::memcpy(data, dt,
sizeof(T) * 9);
1650 std::memcpy(data, src.
data,
sizeof(T) * 9);
1657 template<
class FromT>
1660 for (
int i = 0; i < 9; i++)
1662 data[i] =
static_cast<T
>(src.
data[i]);
1671 for (
int i = 0; i < 9; i++)
1672 data[i] = (i % 4) ? 0 : 1;
1688 float ac = cos(xRads);
1689 float as = sin(xRads);
1690 float bc = cos(yRads);
1691 float bs = sin(yRads);
1692 float cc = cos(zRads);
1693 float cs = sin(zRads);
1721 for (
int i = 0; i < 3; i++)
1723 for (
int j = 0; j < 3; j++)
1725 ret.
at(i, j) =
static_cast<T
>(mat[j * 4 + i]);
1737 template<
class FromT>
1741 {
static_cast<T
>(arr[0]), static_cast<T>(arr[3]),
static_cast<T
>(arr[6]), static_cast<T>(arr[1]),
1742 static_cast<T
>(arr[4]), static_cast<T>(arr[7]),
static_cast<T
>(arr[2]), static_cast<T>(arr[5]),
1743 static_cast<T
>(arr[8]) };
1754 template<
class FromT>
1758 {
static_cast<T
>(arr[0]), static_cast<T>(arr[1]),
static_cast<T
>(arr[2]), static_cast<T>(arr[3]),
1759 static_cast<T
>(arr[4]), static_cast<T>(arr[5]),
static_cast<T
>(arr[6]), static_cast<T>(arr[7]),
1760 static_cast<T
>(arr[8]) };
1776 for (
int i = 0; i < 9; i++)
1791 return !(*
this == rhs);
1802 assert(x >= 0 && x < 3);
1803 assert(y >= 0 && y < 3);
1804 return data[x * 3 + y];
1812 const T&
at(
int x,
int y)
const 1814 assert(x >= 0 && x < 3);
1815 assert(y >= 0 && y < 3);
1816 return data[x * 3 + y];
1826 assert(i >= 1 && i <= 3);
1827 assert(j >= 1 && j <= 3);
1828 return data[(j - 1) * 3 + i - 1];
1838 assert(i >= 1 && i <= 3);
1839 assert(j >= 1 && j <= 3);
1840 return data[(j - 1) * 3 + i - 1];
1849 std::memcpy(data, rhs.
data,
sizeof(T) * 9);
1857 template<
class FromT>
1860 for (
int i = 0; i < 9; i++)
1862 data[i] =
static_cast<T
>(rhs.
data[i]);
1873 std::memcpy(data, rhs,
sizeof(T) * 9);
1891 for (
int i = 0; i < 9; i++)
1892 ret.
data[i] = data[i] + rhs.
data[i];
1903 for (
int i = 0; i < 9; i++)
1904 ret.
data[i] = data[i] - rhs.
data[i];
1916 for (
int i = 0; i < 9; i++)
1917 ret.
data[i] = data[i] + rhs;
1928 for (
int i = 0; i < 9; i++)
1929 ret.
data[i] = data[i] - rhs;
1940 for (
int i = 0; i < 9; i++)
1941 ret.
data[i] = data[i] * rhs;
1952 for (
int i = 0; i < 9; i++)
1953 ret.
data[i] = data[i] / rhs;
1964 return Vector3<T>(data[0] * rhs.
x + data[3] * rhs.
y + data[6] * rhs.
z,
1965 data[1] * rhs.
x + data[4] * rhs.
y + data[7] * rhs.
z,
1966 data[2] * rhs.
x + data[5] * rhs.
y + data[8] * rhs.
z);
1976 for (
int i = 0; i < 3; i++)
1978 for (
int j = 0; j < 3; j++)
1981 for (
int k = 0; k < 3; k++)
1982 n += rhs.
at(i, k) * at(k, j);
1997 for (
int i = 0; i < 3; i++)
1999 for (
int j = 0; j < 3; j++)
2001 ret.
at(i, j) = at(j, i);
2018 Matrix3<T> ret = (*this) + (rhs - (*this)) * fact;
2024 return +at(0, 0) * at(1, 1) * at(2, 2) + at(0, 1) * at(1, 2) * at(2, 0) + at(0, 2) * at(1, 0) * at(2, 1)
2025 - at(0, 0) * at(1, 2) * at(2, 1) - at(0, 1) * at(1, 0) * at(2, 2) - at(0, 2) * at(1, 1) * at(2, 0);
2035 ret.
at(0, 0) = at(1, 1) * at(2, 2) - at(2, 1) * at(1, 2);
2036 ret.
at(0, 1) = at(2, 1) * at(0, 2) - at(0, 1) * at(2, 2);
2037 ret.
at(0, 2) = at(0, 1) * at(1, 2) - at(1, 1) * at(0, 2);
2038 ret.
at(1, 0) = at(2, 0) * at(1, 2) - at(1, 0) * at(2, 2);
2039 ret.
at(1, 1) = at(0, 0) * at(2, 2) - at(2, 0) * at(0, 2);
2040 ret.
at(1, 2) = at(1, 0) * at(0, 2) - at(0, 0) * at(1, 2);
2041 ret.
at(2, 0) = at(1, 0) * at(2, 1) - at(2, 0) * at(1, 1);
2042 ret.
at(2, 1) = at(2, 0) * at(0, 1) - at(0, 0) * at(2, 1);
2043 ret.
at(2, 2) = at(0, 0) * at(1, 1) - at(1, 0) * at(0, 1);
2044 return ret * (1.0f / det());
2064 operator const T*()
const 2066 return (
const T*) data;
2076 friend std::ostream& operator <<(std::ostream& lhs, const Matrix3<T>& rhs)
2078 for (
int i = 0; i < 3; i++)
2081 for (
int j = 0; j < 3; j++)
2083 lhs << rhs.
at(j, i) <<
"\t";
2085 lhs <<
"|" << std::endl;
2095 std::ostringstream oss;
2127 for (
int i = 0; i < 16; i++)
2128 data[i] = (i % 5) ? 0 : 1;
2137 std::memcpy(data, dt,
sizeof(T) * 16);
2146 std::memcpy(data, src.
data,
sizeof(T) * 16);
2153 template<
class FromT>
2156 for (
int i = 0; i < 16; i++)
2158 data[i] =
static_cast<T
>(src.
data[i]);
2167 for (
int i = 0; i < 16; i++)
2168 data[i] = (i % 5) ? 0 : 1;
2184 float ac = cos(xRads);
2185 float as = sin(xRads);
2186 float bc = cos(yRads);
2187 float bs = sin(yRads);
2188 float cc = cos(zRads);
2189 float cs = sin(zRads);
2266 forward = centerPos - eyePos;
2278 m.
at(0, 0) = side.
x;
2279 m.
at(1, 0) = side.
y;
2280 m.
at(2, 0) = side.
z;
2286 m.
at(0, 2) = -forward.
x;
2287 m.
at(1, 2) = -forward.
y;
2288 m.
at(2, 2) = -forward.
z;
2334 const T invWidth = 1.0 / (right - left);
2335 const T invHeight = 1.0 / (top - bottom);
2336 const T invDepth = 1.0 / (zFar - zNear);
2338 const T twoZNear = 2 * zNear;
2340 ret.
at(0,0) = twoZNear * invWidth;
2341 ret.
at(1,1) = twoZNear * invHeight;
2343 ret.
at(2,0) = (right + left) * invWidth;
2344 ret.
at(2,1) = (top + bottom) * invHeight;
2345 ret.
at(2,2) = - (zFar + zNear) * invDepth;
2348 ret.
at(3,2) = - twoZNear * zFar * invDepth;
2393 const T invWidth = 1.0 / (right - left);
2394 const T invHeight = 1.0 / (top - bottom);
2395 const T invDepth = 1.0 / (zFar - zNear);
2399 ret.
at(0,0) = 2 * invWidth;
2400 ret.
at(1,1) = 2 * invHeight;
2401 ret.
at(2,2) = -2 * invDepth;
2403 ret.
at(3,0) = -(right + left) * invWidth;
2404 ret.
at(3,1) = -(top + bottom) * invHeight;
2405 ret.
at(3,2) = -(zFar + zNear) * invDepth;
2416 template<
class FromT>
2420 {
static_cast<T
>(arr[0]), static_cast<T>(arr[4]),
static_cast<T
>(arr[8]), static_cast<T>(arr[12]),
2421 static_cast<T
>(arr[1]), static_cast<T>(arr[5]),
static_cast<T
>(arr[9]), static_cast<T>(arr[13]),
2422 static_cast<T
>(arr[2]), static_cast<T>(arr[6]),
static_cast<T
>(arr[10]), static_cast<T>(arr[14]),
2423 static_cast<T
>(arr[3]), static_cast<T>(arr[7]),
static_cast<T
>(arr[11]), static_cast<T>(arr[15]) };
2434 template<
class FromT>
2438 {
static_cast<T
>(arr[0]), static_cast<T>(arr[1]),
static_cast<T
>(arr[2]), static_cast<T>(arr[3]),
2439 static_cast<T
>(arr[4]), static_cast<T>(arr[5]),
static_cast<T
>(arr[6]), static_cast<T>(arr[7]),
2440 static_cast<T
>(arr[8]), static_cast<T>(arr[9]),
static_cast<T
>(arr[10]), static_cast<T>(arr[11]),
2441 static_cast<T
>(arr[12]), static_cast<T>(arr[13]),
static_cast<T
>(arr[14]), static_cast<T>(arr[15]) };
2457 for (
int i = 0; i < 16; i++)
2473 return !(*
this == rhs);
2484 assert(x >= 0 && x < 4);
2485 assert(y >= 0 && y < 4);
2486 return data[x * 4 + y];
2494 const T&
at(
int x,
int y)
const 2496 assert(x >= 0 && x < 4);
2497 assert(y >= 0 && y < 4);
2498 return data[x * 4 + y];
2508 assert(i >= 1 && i <= 4);
2509 assert(j >= 1 && j <= 4);
2510 return data[(j - 1) * 4 + i - 1];
2520 assert(i >= 1 && i <= 4);
2521 assert(j >= 1 && j <= 4);
2522 return data[(j - 1) * 4 + i - 1];
2540 return Vector3<T>(at(3, 0), at(3, 1), at(3, 2));
2550 for (
int i = 0; i < 3; i++)
2552 for (
int j = 0; j < 3; j++)
2554 at(i, j) = m.
at(i, j);
2564 {
return Vector3<T>(at(0,0), at(1,1), at(2,2)); }
2572 at(0,0) = at(1,1) = at(2,2) = s;
2605 std::memcpy(data, rhs.
data,
sizeof(T) * 16);
2613 template<
class FromT>
2616 for (
int i = 0; i < 16; i++)
2618 data[i] =
static_cast<T
>(rhs.
data[i]);
2629 std::memcpy(data, rhs,
sizeof(T) * 16);
2647 for (
int i = 0; i < 16; i++)
2648 ret.
data[i] = data[i] + rhs.
data[i];
2659 for (
int i = 0; i < 16; i++)
2660 ret.
data[i] = data[i] - rhs.
data[i];
2672 for (
int i = 0; i < 16; i++)
2673 ret.
data[i] = data[i] + rhs;
2684 for (
int i = 0; i < 16; i++)
2685 ret.
data[i] = data[i] - rhs;
2696 for (
int i = 0; i < 16; i++)
2697 ret.
data[i] = data[i] * rhs;
2708 for (
int i = 0; i < 16; i++)
2709 ret.
data[i] = data[i] / rhs;
2720 return Vector4<T>(data[0] * rhs.
x + data[4] * rhs.
y + data[8] * rhs.
z + data[12] * rhs.
w,
2721 data[1] * rhs.
x + data[5] * rhs.
y + data[9] * rhs.
z + data[13] * rhs.
w,
2722 data[2] * rhs.
x + data[6] * rhs.
y + data[10] * rhs.
z + data[14] * rhs.
w,
2723 data[3] * rhs.
x + data[7] * rhs.
y + data[11] * rhs.
z + data[15] * rhs.
w);
2733 return Vector3<T>(data[0] * rhs.
x + data[4] * rhs.
y + data[8] * rhs.
z,
2734 data[1] * rhs.
x + data[5] * rhs.
y + data[9] * rhs.
z,
2735 data[2] * rhs.
x + data[6] * rhs.
y + data[10] * rhs.
z);
2745 for (
int i = 0; i < 4; i++)
2747 for (
int j = 0; j < 4; j++)
2750 for (
int k = 0; k < 4; k++)
2751 n += rhs.
at(i, k) * at(k, j);
2769 return +at(3, 0) * at(2, 1) * at(1, 2) * at(0, 3) - at(2, 0) * at(3, 1) * at(1, 2) * at(0, 3)
2770 - at(3, 0) * at(1, 1) * at(2, 2) * at(0, 3) + at(1, 0) * at(3, 1) * at(2, 2) * at(0, 3)
2772 + at(2, 0) * at(1, 1) * at(3, 2) * at(0, 3) - at(1, 0) * at(2, 1) * at(3, 2) * at(0, 3)
2773 - at(3, 0) * at(2, 1) * at(0, 2) * at(1, 3) + at(2, 0) * at(3, 1) * at(0, 2) * at(1, 3)
2775 + at(3, 0) * at(0, 1) * at(2, 2) * at(1, 3) - at(0, 0) * at(3, 1) * at(2, 2) * at(1, 3)
2776 - at(2, 0) * at(0, 1) * at(3, 2) * at(1, 3) + at(0, 0) * at(2, 1) * at(3, 2) * at(1, 3)
2778 + at(3, 0) * at(1, 1) * at(0, 2) * at(2, 3) - at(1, 0) * at(3, 1) * at(0, 2) * at(2, 3)
2779 - at(3, 0) * at(0, 1) * at(1, 2) * at(2, 3) + at(0, 0) * at(3, 1) * at(1, 2) * at(2, 3)
2781 + at(1, 0) * at(0, 1) * at(3, 2) * at(2, 3) - at(0, 0) * at(1, 1) * at(3, 2) * at(2, 3)
2782 - at(2, 0) * at(1, 1) * at(0, 2) * at(3, 3) + at(1, 0) * at(2, 1) * at(0, 2) * at(3, 3)
2784 + at(2, 0) * at(0, 1) * at(1, 2) * at(3, 3) - at(0, 0) * at(2, 1) * at(1, 2) * at(3, 3)
2785 - at(1, 0) * at(0, 1) * at(2, 2) * at(3, 3) + at(0, 0) * at(1, 1) * at(2, 2) * at(3, 3);
2799 ret.
at(0, 0) = +at(2, 1) * at(3, 2) * at(1, 3) - at(3, 1) * at(2, 2) * at(1, 3) + at(3, 1) * at(1, 2) * at(2, 3)
2800 - at(1, 1) * at(3, 2) * at(2, 3) - at(2, 1) * at(1, 2) * at(3, 3) + at(1, 1) * at(2, 2) * at(3, 3);
2802 ret.
at(1, 0) = +at(3, 0) * at(2, 2) * at(1, 3) - at(2, 0) * at(3, 2) * at(1, 3) - at(3, 0) * at(1, 2) * at(2, 3)
2803 + at(1, 0) * at(3, 2) * at(2, 3) + at(2, 0) * at(1, 2) * at(3, 3) - at(1, 0) * at(2, 2) * at(3, 3);
2805 ret.
at(2, 0) = +at(2, 0) * at(3, 1) * at(1, 3) - at(3, 0) * at(2, 1) * at(1, 3) + at(3, 0) * at(1, 1) * at(2, 3)
2806 - at(1, 0) * at(3, 1) * at(2, 3) - at(2, 0) * at(1, 1) * at(3, 3) + at(1, 0) * at(2, 1) * at(3, 3);
2808 ret.
at(3, 0) = +at(3, 0) * at(2, 1) * at(1, 2) - at(2, 0) * at(3, 1) * at(1, 2) - at(3, 0) * at(1, 1) * at(2, 2)
2809 + at(1, 0) * at(3, 1) * at(2, 2) + at(2, 0) * at(1, 1) * at(3, 2) - at(1, 0) * at(2, 1) * at(3, 2);
2811 ret.
at(0, 1) = +at(3, 1) * at(2, 2) * at(0, 3) - at(2, 1) * at(3, 2) * at(0, 3) - at(3, 1) * at(0, 2) * at(2, 3)
2812 + at(0, 1) * at(3, 2) * at(2, 3) + at(2, 1) * at(0, 2) * at(3, 3) - at(0, 1) * at(2, 2) * at(3, 3);
2814 ret.
at(1, 1) = +at(2, 0) * at(3, 2) * at(0, 3) - at(3, 0) * at(2, 2) * at(0, 3) + at(3, 0) * at(0, 2) * at(2, 3)
2815 - at(0, 0) * at(3, 2) * at(2, 3) - at(2, 0) * at(0, 2) * at(3, 3) + at(0, 0) * at(2, 2) * at(3, 3);
2817 ret.
at(2, 1) = +at(3, 0) * at(2, 1) * at(0, 3) - at(2, 0) * at(3, 1) * at(0, 3) - at(3, 0) * at(0, 1) * at(2, 3)
2818 + at(0, 0) * at(3, 1) * at(2, 3) + at(2, 0) * at(0, 1) * at(3, 3) - at(0, 0) * at(2, 1) * at(3, 3);
2820 ret.
at(3, 1) = +at(2, 0) * at(3, 1) * at(0, 2) - at(3, 0) * at(2, 1) * at(0, 2) + at(3, 0) * at(0, 1) * at(2, 2)
2821 - at(0, 0) * at(3, 1) * at(2, 2) - at(2, 0) * at(0, 1) * at(3, 2) + at(0, 0) * at(2, 1) * at(3, 2);
2823 ret.
at(0, 2) = +at(1, 1) * at(3, 2) * at(0, 3) - at(3, 1) * at(1, 2) * at(0, 3) + at(3, 1) * at(0, 2) * at(1, 3)
2824 - at(0, 1) * at(3, 2) * at(1, 3) - at(1, 1) * at(0, 2) * at(3, 3) + at(0, 1) * at(1, 2) * at(3, 3);
2826 ret.
at(1, 2) = +at(3, 0) * at(1, 2) * at(0, 3) - at(1, 0) * at(3, 2) * at(0, 3) - at(3, 0) * at(0, 2) * at(1, 3)
2827 + at(0, 0) * at(3, 2) * at(1, 3) + at(1, 0) * at(0, 2) * at(3, 3) - at(0, 0) * at(1, 2) * at(3, 3);
2829 ret.
at(2, 2) = +at(1, 0) * at(3, 1) * at(0, 3) - at(3, 0) * at(1, 1) * at(0, 3) + at(3, 0) * at(0, 1) * at(1, 3)
2830 - at(0, 0) * at(3, 1) * at(1, 3) - at(1, 0) * at(0, 1) * at(3, 3) + at(0, 0) * at(1, 1) * at(3, 3);
2832 ret.
at(3, 2) = +at(3, 0) * at(1, 1) * at(0, 2) - at(1, 0) * at(3, 1) * at(0, 2) - at(3, 0) * at(0, 1) * at(1, 2)
2833 + at(0, 0) * at(3, 1) * at(1, 2) + at(1, 0) * at(0, 1) * at(3, 2) - at(0, 0) * at(1, 1) * at(3, 2);
2835 ret.
at(0, 3) = +at(2, 1) * at(1, 2) * at(0, 3) - at(1, 1) * at(2, 2) * at(0, 3) - at(2, 1) * at(0, 2) * at(1, 3)
2836 + at(0, 1) * at(2, 2) * at(1, 3) + at(1, 1) * at(0, 2) * at(2, 3) - at(0, 1) * at(1, 2) * at(2, 3);
2838 ret.
at(1, 3) = +at(1, 0) * at(2, 2) * at(0, 3) - at(2, 0) * at(1, 2) * at(0, 3) + at(2, 0) * at(0, 2) * at(1, 3)
2839 - at(0, 0) * at(2, 2) * at(1, 3) - at(1, 0) * at(0, 2) * at(2, 3) + at(0, 0) * at(1, 2) * at(2, 3);
2841 ret.
at(2, 3) = +at(2, 0) * at(1, 1) * at(0, 3) - at(1, 0) * at(2, 1) * at(0, 3) - at(2, 0) * at(0, 1) * at(1, 3)
2842 + at(0, 0) * at(2, 1) * at(1, 3) + at(1, 0) * at(0, 1) * at(2, 3) - at(0, 0) * at(1, 1) * at(2, 3);
2844 ret.
at(3, 3) = +at(1, 0) * at(2, 1) * at(0, 2) - at(2, 0) * at(1, 1) * at(0, 2) + at(2, 0) * at(0, 1) * at(1, 2)
2845 - at(0, 0) * at(2, 1) * at(1, 2) - at(1, 0) * at(0, 1) * at(2, 2) + at(0, 0) * at(1, 1) * at(2, 2);
2856 for (
int i = 0; i < 4; i++)
2858 for (
int j = 0; j < 4; j++)
2860 ret.
at(i, j) = at(j, i);
2877 Matrix4<T> ret = (*this) + (rhs - (*this)) * fact;
2897 operator const T*()
const 2899 return (
const T*) data;
2909 friend std::ostream& operator <<(std::ostream& lhs, const Matrix4<T>& rhs)
2911 for (
int i = 0; i < 4; i++)
2914 for (
int j = 0; j < 4; j++)
2916 lhs << rhs.
at(j, i) <<
"\t";
2918 lhs <<
"|" << std::endl;
2928 std::ostringstream oss;
2981 template<
class FromT>
2983 : w(static_cast<T>(q.w)), v(q.v)
3024 template<
class FromT>
3028 w =
static_cast<T
>(rhs.
w);
3050 lhs.
w * rhs.
v.x + lhs.
v.x * rhs.
w + lhs.
v.y * rhs.
v.z - lhs.
v.z * rhs.
v.y,
3051 lhs.
w * rhs.
v.y - lhs.
v.x * rhs.
v.z + lhs.
v.y * rhs.
w + lhs.
v.z * rhs.
v.x,
3052 lhs.
w * rhs.
v.z + lhs.
v.x * rhs.
v.y - lhs.
v.y * rhs.
v.x + lhs.
v.z * rhs.
w);
3129 return (std::fabs(lhs.
w - rhs.
w) <
EPSILON) && lhs.
v == rhs.
v;
3139 return !(*
this == rhs);
3167 return (T) std::sqrt(w * w + v.
lengthSq());
3213 double angleRad =
DEG2RAD(angleDeg);
3214 double sa2 = std::sin(angleRad / 2);
3215 double ca2 = std::cos(angleRad / 2);
3251 ret.
at(0, 0) = 1 - 2 * (yy + zz);
3252 ret.
at(1, 0) = 2 * (xy - zw);
3253 ret.
at(2, 0) = 2 * (xz + yw);
3255 ret.
at(0, 1) = 2 * (xy + zw);
3256 ret.
at(1, 1) = 1 - 2 * (xx + zz);
3257 ret.
at(2, 1) = 2 * (yz - xw);
3259 ret.
at(0, 2) = 2 * (xz - yw);
3260 ret.
at(1, 2) = 2 * (yz + xw);
3261 ret.
at(2, 2) = 1 - 2 * (xx + yy);
3288 ret.
at(0, 0) = 1 - 2 * (yy + zz);
3289 ret.
at(1, 0) = 2 * (xy - zw);
3290 ret.
at(2, 0) = 2 * (xz + yw);
3293 ret.
at(0, 1) = 2 * (xy + zw);
3294 ret.
at(1, 1) = 1 - 2 * (xx + zz);
3295 ret.
at(2, 1) = 2 * (yz - xw);
3298 ret.
at(0, 2) = 2 * (xz - yw);
3299 ret.
at(1, 2) = 2 * (yz + xw);
3300 ret.
at(2, 2) = 1 - 2 * (xx + yy);
3329 friend std::ostream& operator <<(std::ostream& oss, const Quaternion<T>& q)
3331 oss <<
"Re: " << q.
w <<
" Im: " << q.v;
3340 std::ostringstream oss;
3357 tr = m(1, 1) + m(2, 2) + m(3, 3);
3360 s = 0.5 / (T) sqrt(tr + 1.0);
3362 q.
v.x = (m(3, 2) - m(2, 3)) * s;
3363 q.
v.y = (m(1, 3) - m(3, 1)) * s;
3364 q.
v.z = (m(2, 1) - m(1, 2)) * s;
3372 char bigIdx = (d0 > d1) ? ((d0 > d2) ? 0 : 2):((d1 > d2) ? 1 : 2);
3376 s = 2.0 * (T) sqrt(1.0 + m(1, 1) - m(2, 2) - m(3, 3));
3377 q.
w = (m(3, 2) - m(2, 3)) / s;
3379 q.
v.y = (m(1, 2) + m(2, 1)) / s;
3380 q.
v.z = (m(1, 3) + m(3, 1)) / s;
3382 else if (bigIdx == 1)
3384 s = 2.0 * (T) sqrt(1.0 + m(2, 2) - m(1, 1) - m(3, 3));
3385 q.
w = (m(1, 3) - m(3, 1)) / s;
3386 q.
v.x = (m(1, 2) + m(2, 1)) / s;
3388 q.
v.z = (m(2, 3) + m(3, 2)) / s;
3392 s = 2.0 * (T) sqrt(1.0 + m(3, 3) - m(1, 1) - m(2, 2));
3393 q.
w = (m(2, 1) - m(1, 2)) / s;
3394 q.
v.x = (m(1, 3) + m(3, 1)) / s;
3395 q.
v.y = (m(2, 3) + m(3, 2)) / s;
3416 tr = m(1, 1) + m(2, 2) + m(3, 3);
3419 s = 0.5 / (T) sqrt(tr + 1.0);
3421 q.
v.x = (m(3, 2) - m(2, 3)) * s;
3422 q.
v.y = (m(1, 3) - m(3, 1)) * s;
3423 q.
v.z = (m(2, 1) - m(1, 2)) * s;
3431 char bigIdx = (d0 > d1) ? ((d0 > d2) ? 0 : 2):((d1 > d2) ? 1 : 2);
3435 s = 2.0 * (T) sqrt(1.0 + m(1, 1) - m(2, 2) - m(3, 3));
3436 q.
w = (m(3, 2) - m(2, 3)) / s;
3438 q.
v.y = (m(1, 2) + m(2, 1)) / s;
3439 q.
v.z = (m(1, 3) + m(3, 1)) / s;
3441 else if (bigIdx == 1)
3443 s = 2.0 * (T) sqrt(1.0 + m(2, 2) - m(1, 1) - m(3, 3));
3444 q.
w = (m(1, 3) - m(3, 1)) / s;
3445 q.
v.x = (m(1, 2) + m(2, 1)) / s;
3447 q.
v.z = (m(2, 3) + m(3, 2)) / s;
3451 s = 2.0 * (T) sqrt(1.0 + m(3, 3) - m(1, 1) - m(2, 2));
3452 q.
w = (m(2, 1) - m(1, 2)) / s;
3453 q.
v.x = (m(1, 3) + m(3, 1)) / s;
3454 q.
v.y = (m(2, 3) + m(3, 2)) / s;
3473 T cosTheta = w * q2.
w + v.
x * q2.
v.x + v.
y * q2.
v.y + v.
z * q2.
v.z;
3474 T theta = (T) acos(cosTheta);
3481 T sinTheta = (T) sqrt(1.0 - cosTheta * cosTheta);
3484 ret.
w = 0.5 * w + 0.5 * q2.
w;
3485 ret.
v = v.
lerp(0.5, q2.
v);
3489 T rA = (T) sin((1.0 - r) * theta) / sinTheta;
3490 T rB = (T) sin(r * theta) / sinTheta;
3492 ret.
w = w * rA + q2.
w * rB;
3493 ret.
v.x = v.
x * rA + q2.
v.x * rB;
3494 ret.
v.y = v.
y * rA + q2.
v.y * rB;
3495 ret.
v.z = v.
z * rA + q2.
v.z * rB;
3506 #ifdef VMATH_NAMESPACE 3520 #ifdef VMATH_NAMESPACE 3521 #define VEC2 VMATH_NAMESPACE::Vector2 3522 #define VEC3 VMATH_NAMESPACE::Vector3 3523 #define VEC4 VMATH_NAMESPACE::Vector4 3525 #define VEC2 Vector2 3526 #define VEC3 Vector3 3527 #define VEC4 Vector4 3537 template <
typename T>
3538 VEC2<T>
min(
const VEC2<T>& a,
const VEC2<T>& b)
3540 return VEC2<T>(::std::min(a.x, b.x), ::std::min(a.y, b.y));
3547 template <
typename T>
3548 VEC3<T>
min(
const VEC3<T>& a,
const VEC3<T>& b)
3550 return VEC3<T>(::std::min(a.x, b.x), ::std::min(a.y, b.y), ::std::min(a.z, b.z));
3557 template <
typename T>
3558 VEC4<T>
min(
const VEC4<T>& a,
const VEC4<T>& b)
3560 return VEC4<T>(::std::min(a.x, b.x), ::std::min(a.y, b.y), ::std::min(a.z, b.z), ::std::min(a.w, b.w));
3567 template <
typename T>
3568 VEC2<T>
max(
const VEC2<T>& a,
const VEC2<T>& b)
3570 return VEC2<T>(::std::max(a.x, b.x), ::std::max(a.y, b.y));
3577 template <
typename T>
3578 VEC3<T>
max(
const VEC3<T>& a,
const VEC3<T>& b)
3580 return VEC3<T>(::std::max(a.x, b.x), ::std::max(a.y, b.y), ::std::max(a.z, b.z));
3587 template <
typename T>
3588 VEC4<T>
max(
const VEC4<T>& a,
const VEC4<T>& b)
3590 return VEC4<T>(::std::max(a.x, b.x), ::std::max(a.y, b.y), ::std::max(a.z, b.z), ::std::max(a.w, b.w));
3599 #ifdef VMATH_NAMESPACE 3600 namespace VMATH_NAMESPACE
3602 #endif //VMATH_NAMESPACE 3620 template <
typename T>
3639 : min(1,1,1), max(-1,-1,-1)
3646 template <
typename SrcT>
3648 : min(point), max(point)
3661 template <
typename SrcT>
3662 Aabb3(SrcT x0, SrcT y0, SrcT z0, SrcT x1, SrcT y1, SrcT z1)
3663 : min(
std::min(x0,x1),
std::min(y0,y1),
std::min(z0,z1)),
3664 max(
std::max(x0,x1),
std::max(y0,y1),
std::max(z0,z1))
3673 template <
typename SrcT>
3675 : min(x,y,z), max(x,y,z)
3682 template <
typename SrcT>
3684 : min(src.min), max(src.max)
3692 template <
typename SrcT>
3708 {
return min.
x <= max.
x && min.
y <= max.
y && min.
z <= max.
z; }
3721 template <
typename SrcT>
3730 min = std::min(min, point);
3731 max = std::max(max, point);
3739 template <
typename SrcT>
3749 min = std::min(min, box.
min);
3750 max = std::max(max, box.
max);
3759 template <
typename SrcT>
3772 template <
typename SrcT>
3785 template <
typename SrcT>
3796 if (min.
x > point.
x || point.
x > max.
x)
3798 if (min.
y > point.
y || point.
y > max.
y)
3800 if (min.
z > point.
z || point.
z > max.
z)
3811 template <
typename SrcT>
3822 if (max.
x < box.
min.x || min.
x > box.
max.x)
3824 if (max.
y < box.
min.y || min.
y > box.
max.y)
3826 if (max.
z < box.
min.z || min.
z > box.
max.z)
3839 template <
typename SrcT>
3843 if (max.
x < other.
min.x || min.
x > other.
max.x)
3845 if (max.
y < other.
min.y || min.
y > other.
max.y)
3847 if (max.
z < other.
min.z || min.
z > other.
max.z)
3850 ret.
min = std::max(min, other.
min);
3851 ret.
max = std::min(max, other.
max);
3861 {
return (min + max) * 0.5f; }
3868 {
return (max - min) * 0.5f; }
3875 {
return max - min; }
3895 return Vector3<T>(i & 1 ? min.
x : max.
x, i & 2 ? min.
y : max.
y, i & 4 ? min.
z : max.
z);
3906 for (
size_t i = 0; i < 8; i++)
3909 ret.
extend((t * p).xyz());
3923 template <
typename RhsT>
3926 return min == rhs.
min && max == rhs.
max;
3934 template <
typename RhsT>
3937 return min != rhs.
min || max != rhs.
max;
3947 return transformed(rhs);
3957 *
this = transformed(rhs);
3967 template <
typename SrcT>
3979 template <
typename SrcT>
3991 template <
typename RhsT>
3994 return extended(rhs);
4002 template <
typename RhsT>
4005 return intersection(rhs);
4014 friend std::ostream& operator<<(std::ostream& lhs, const Aabb3<T>& rhs)
4016 lhs << rhs.min <<
" x " << rhs.max;
4025 #ifdef VMATH_NAMESPACE 4027 #endif //VMATH_NAMESPACE 4030 #endif // __vmath_Header_File__ bool operator!=(const Quaternion< T > &rhs) const
Inequality test operator.
Definition: vmath.h:3137
std::string toString() const
Gets string representation.
Definition: vmath.h:558
static Quaternion< T > fromMatrix(const Matrix4< T > &m)
Creates quaternion from transform matrix.
Definition: vmath.h:3352
Vector4< T > & operator*=(const Vector4< T > &rhs)
Multiplication operator.
Definition: vmath.h:1349
Vector2< T > & operator/=(const Vector2< T > &rhs)
Division operator.
Definition: vmath.h:354
Aabb3(SrcT x, SrcT y, SrcT z)
Constructs axes-aligned bounding-box containing point (x, y, z)
Definition: vmath.h:3674
T y
Second element of vector, alias for Y-coordinate.
Definition: vmath.h:179
Aabb3< T > & operator=(const Aabb3< SrcT > &rhs)
Assign operator.
Definition: vmath.h:3693
static Matrix4< T > fromRowMajorArray(const FromT *arr)
Creates new matrix 4x4 from array that represents such matrix 4x4 as array of tightly packed elements...
Definition: vmath.h:2417
Vector4< int > Vector4i
Three dimensional Vector of ints.
Definition: vmath.h:1610
Matrix4< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:2693
Matrix3< T > operator-(const Matrix3< T > &rhs) const
Subtraction operator.
Definition: vmath.h:1900
Quaternion< T > slerp(T r, const Quaternion< T > &q2) const
Computes spherical interpolation between quaternions (this, q2) using coefficient of interpolation r ...
Definition: vmath.h:3470
Matrix3< double > Matrix3d
Matrix 3x3 of doubles.
Definition: vmath.h:2104
Aabb3< T > transformed(const Matrix4< T > &t) const
Gets transformed bounding-box by transform t.
Definition: vmath.h:3903
Vector3< T > min
Position of Min corner of bounding box.
Definition: vmath.h:3627
bool intersects(const Aabb3< SrcT > &box) const
Tests if other bounding-box box intersects (even partially) with this bouding-box.
Definition: vmath.h:3812
Matrix4(const Matrix4< T > &src)
Copy constructor.
Definition: vmath.h:2144
Matrix4< double > Matrix4d
Matrix 4x4 of doubles.
Definition: vmath.h:2938
Vector3< T > v
Imaginary part of quaternion.
Definition: vmath.h:2960
Vector4< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:1429
Vector3< T > & operator+=(T rhs)
Addition operator.
Definition: vmath.h:894
Vector3< T > & operator/=(const Vector3< T > &rhs)
Division operator.
Definition: vmath.h:827
static Matrix3< T > createRotationAroundAxis(T xDeg, T yDeg, T zDeg)
Creates rotation matrix by rotation around axis.
Definition: vmath.h:1681
T length() const
Get lenght of quaternion.
Definition: vmath.h:3165
Matrix4< T > operator-(const Matrix4< T > &rhs) const
Subtraction operator.
Definition: vmath.h:2656
T lengthSq() const
Return square of length.
Definition: vmath.h:1524
T x
First element of vector, alias for X-coordinate.
Definition: vmath.h:597
static Matrix3< T > fromColumnMajorArray(const FromT *arr)
Creates new matrix 3x3 from array that represents such matrix 3x3 as array of tightly packed elements...
Definition: vmath.h:1755
Vector3< T > operator*(const Vector3< T > &rhs) const
Multiplication operator.
Definition: vmath.h:1962
Quaternion(const Quaternion< FromT > &q)
Copy casting constructor.
Definition: vmath.h:2982
Matrix3< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:1913
Vector4< double > Vector4d
Three dimensional Vector of doubles.
Definition: vmath.h:1608
const T & operator()(int i, int j) const
Get constant reference to element at position (i,j), with math matrix notation.
Definition: vmath.h:1836
bool valid() const
Checks if bounding-box is valid.
Definition: vmath.h:3707
Matrix3< T > inverse()
Computes inverse matrix.
Definition: vmath.h:2032
bool operator==(const Matrix4< T > &rhs) const
Equality test operator.
Definition: vmath.h:2455
Vector3< T > center() const
Gets center point of bounding-box.
Definition: vmath.h:3860
bool operator==(const Vector4< T > &rhs) const
Equality test operator.
Definition: vmath.h:1379
Matrix3< T > transpose()
Transpose matrix.
Definition: vmath.h:1994
Matrix4(const T *dt)
Copy matrix values from array (these data must be in column major order!)
Definition: vmath.h:2135
T u
Third element of vector, alias for U-coordinate.
Definition: vmath.h:641
T data[16]
Data stored in column major order.
Definition: vmath.h:2119
Vector3< T > xyz() const
Gets 3D vector.
Definition: vmath.h:1571
Quaternion< double > Quatd
Definition: vmath.h:3504
std::string toString() const
Gets string representation.
Definition: vmath.h:1080
T lengthSq() const
Return square of length.
Definition: vmath.h:502
Vector4< T > operator=(const Vector4< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:1233
bool operator==(const Aabb3< RhsT > &rhs) const
Tests if rhs is equal to this bounding-box.
Definition: vmath.h:3924
Aabb3< T > operator|(const Aabb3< RhsT > &rhs) const
Union of this and rhs bounding-boxes.
Definition: vmath.h:3992
T length() const
Get length of vector.
Definition: vmath.h:976
T data[9]
Data stored in column major order.
Definition: vmath.h:1623
T w
Real part of quaternion.
Definition: vmath.h:2956
Vector4< T > & operator*=(T rhs)
Multiplication operator.
Definition: vmath.h:1473
T lengthSq() const
Return square of length.
Definition: vmath.h:988
void normalize()
Normalize vector.
Definition: vmath.h:996
Aabb3< T > extended(const Aabb3< SrcT > &box) const
Gets a copy of this bounding-box extnended by box box.
Definition: vmath.h:3773
Vector3< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:876
static Matrix4< T > createFrustum(T left, T right, T bottom, T top, T zNear, T zFar)
Creates OpenGL compatible perspective projection according specified frustum parameters.
Definition: vmath.h:2307
void extend(const Aabb3< SrcT > &box)
Extends this bounding-box by a box box.
Definition: vmath.h:3740
Class for matrix 3x3.
Definition: vmath.h:1619
bool operator!=(const Vector2< T > &rhs) const
Inequality test operator.
Definition: vmath.h:460
T x
Definition: vmath.h:1121
Vector3< double > Vector3d
Three dimensional Vector of doubles.
Definition: vmath.h:1091
Quaternion(T w_, T x, T y, T z)
Creates quaternion object from value (w_ + xi + yj + zk).
Definition: vmath.h:3004
Matrix4< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:2669
Quaternion class implementing some quaternion algebra operations.
Definition: vmath.h:2950
const T & at(int x, int y) const
Get constant reference to element at position (x,y).
Definition: vmath.h:2494
Matrix3(const Matrix3< T > &src)
Copy constructor.
Definition: vmath.h:1648
T s
First element of vector, alias for S-coordinate.
Definition: vmath.h:603
Vector2< T > & operator=(const Vector2< T > &rhs)
Copy operator.
Definition: vmath.h:243
Matrix3< T > & operator=(const T *rhs)
Copy operator.
Definition: vmath.h:1871
Vector2(const Vector2< FromT > &src)
Copy casting constructor.
Definition: vmath.h:221
Matrix4< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:2681
bool operator!=(const Aabb3< RhsT > &rhs) const
Tests if rhs is not equal to this bounding-box.
Definition: vmath.h:3935
Matrix3< T > operator+(const Matrix3< T > &rhs) const
Addition operator.
Definition: vmath.h:1888
Matrix4< T > inverse()
Computes inverse matrix.
Definition: vmath.h:2795
bool operator==(const Quaternion< T > &rhs) const
Equality test operator.
Definition: vmath.h:3126
T & operator()(int i, int j)
Get reference to element at position (i,j), with math matrix notation.
Definition: vmath.h:1824
T length() const
Get length of vector.
Definition: vmath.h:1500
Aabb3< T > extended(const Vector3< SrcT > &point) const
Gets a copy of this bounding-box extend by a point point.
Definition: vmath.h:3760
Matrix4< T > lerp(T fact, const Matrix4< T > &rhs) const
Linear interpolation of two matrices.
Definition: vmath.h:2875
Vector3< T > operator+(const Vector3< T > &rhs) const
Addition operator.
Definition: vmath.h:755
Vector3(const Vector3< T > &src)
Copy constructor.
Definition: vmath.h:673
Vector2< T > & operator/=(T rhs)
Division operator.
Definition: vmath.h:435
void extend(const Vector3< SrcT > &point)
Extends this bounding-box by a point point.
Definition: vmath.h:3722
Matrix4()
Creates identity matrix.
Definition: vmath.h:2125
Vector2< T > & operator+=(T rhs)
Addition operator.
Definition: vmath.h:402
Quaternion()
Quaternion constructor, sets quaternion to (0 + 0i + 0j + 0k).
Definition: vmath.h:2965
T y
Second element of vector, alias for Y-coordinate.
Definition: vmath.h:1134
Vector2< T > operator+(const Vector2< T > &rhs) const
Addition operator.
Definition: vmath.h:285
static Matrix3< T > fromRowMajorArray(const FromT *arr)
Creates new matrix 3x3 from array that represents such matrix 3x3 as array of tightly packed elements...
Definition: vmath.h:1738
Quaternion< T > & operator+=(const Quaternion< T > &rhs)
Addition operator.
Definition: vmath.h:3078
T det()
Definition: vmath.h:2022
Aabb3(const Vector3< SrcT > &point)
Constructs axes-aligned bound-box containing one point point.
Definition: vmath.h:3647
Vector2()
Creates and sets to (0,0)
Definition: vmath.h:192
bool operator!=(const Matrix3< T > &rhs) const
Inequality test operator.
Definition: vmath.h:1789
bool operator==(const Vector3< T > &rhs) const
Equality test operator.
Definition: vmath.h:946
Vector4(const Vector4< T > &src)
Copy constructor.
Definition: vmath.h:1190
Quaternion< T > operator-() const
Unary negate operator.
Definition: vmath.h:3147
Axes-aligned bounding-box (aka AABB) class.
Definition: vmath.h:3621
Aabb3(const Aabb3< SrcT > &src)
Creates copy of axis-aligned bounding-box.
Definition: vmath.h:3683
Matrix3< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:1937
T z
Third element of vector, alias for Z-coordinate.
Definition: vmath.h:1147
Vector3()
Creates and sets to (0,0,0)
Definition: vmath.h:653
Matrix3< T > lerp(T fact, const Matrix3< T > &rhs) const
Linear interpolation of two matrices.
Definition: vmath.h:2016
Aabb3< double > Aabb3d
Definition: vmath.h:4023
void identity()
Resets matrix to be identity matrix.
Definition: vmath.h:1669
Vector4< float > Vector4f
Three dimensional Vector of floats.
Definition: vmath.h:1606
Matrix3< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:1925
Vector4< T > & operator-=(T rhs)
Subtraction operator.
Definition: vmath.h:1460
Vector2< T > operator-(const Vector2< T > &rhs) const
Subtraction operator.
Definition: vmath.h:294
static Matrix4< T > createScale(T sx, T sy, T sz)
Create scale matrix with sx, sy, and sz being values of matrix main diagonal.
Definition: vmath.h:2244
Vector2< T > & operator*=(T rhs)
Multiplication operator.
Definition: vmath.h:424
Matrix3(const T *dt)
Copy matrix values from array (these data must be in column major order!)
Definition: vmath.h:1639
T b
Third element of vector, alias for B-coordinate.
Definition: vmath.h:646
Matrix4< T > transpose()
Transpose matrix.
Definition: vmath.h:2853
bool intersects(const Vector3< SrcT > &point) const
Tests if the point point is within this bounding-box.
Definition: vmath.h:3786
Vector4< T > & operator-=(const Vector4< T > &rhs)
Subtraction operator.
Definition: vmath.h:1336
std::string toString() const
Gets string representation.
Definition: vmath.h:1596
Vector3< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:885
Vector3< T > operator*(const Vector3< T > &rhs) const
Multiplication operator.
Definition: vmath.h:773
T t
Second element of vector, alias for T-coordinate.
Definition: vmath.h:185
T det()
Computes determinant of matrix.
Definition: vmath.h:2766
Matrix3()
Creates identity matrix.
Definition: vmath.h:1629
T & operator[](int n)
Array access operator.
Definition: vmath.h:721
T a
Fourth element of vector, alias for A-coordinate.
Definition: vmath.h:1156
Matrix4(const Matrix4< FromT > &src)
Copy casting constructor.
Definition: vmath.h:2154
T w
First element of vector, alias for W-coordinate.
Definition: vmath.h:1162
Vector3< T > & operator*=(const Vector3< T > &rhs)
Multiplication operator.
Definition: vmath.h:815
Vector3< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:858
Vector2< T > lerp(T fact, const Vector2< T > &r) const
Linear interpolation of two vectors.
Definition: vmath.h:517
Matrix3< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:1949
Vector4< T > & operator+=(const Vector4< T > &rhs)
Addition operator.
Definition: vmath.h:1323
Vector2< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:375
Class for matrix 4x4.
Definition: vmath.h:2115
T & at(int x, int y)
Get reference to element at postion (x,y).
Definition: vmath.h:2482
Vector2< T > operator/(const Vector2< T > &rhs) const
Division operator.
Definition: vmath.h:312
Vector2< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:384
Matrix4< T > operator*(Matrix4< T > rhs) const
Multiplication operator.
Definition: vmath.h:2742
Vector2< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:393
Vector2< T > & operator+=(const Vector2< T > &rhs)
Addition operator.
Definition: vmath.h:321
void setScale(const Vector3< T > &s)
Sets matrix scale for all axes.
Definition: vmath.h:2592
Quaternion< T > lerp(T fact, const Quaternion< T > &rhs) const
Linear interpolation of two quaternions.
Definition: vmath.h:3321
std::string toString() const
Gets string representation.
Definition: vmath.h:2093
Vector2< T > & operator-=(T rhs)
Subtraction operator.
Definition: vmath.h:413
Matrix3< float > Matrix3f
Matrix 3x3 of floats.
Definition: vmath.h:2102
const T & operator()(int i, int j) const
Get constant reference to element at position (i,j), with math matrix notation.
Definition: vmath.h:2518
Vector3< T > operator/(const Vector3< T > &rhs) const
Division operator.
Definition: vmath.h:782
T b
Third element of vector, alias for B-coordinate.
Definition: vmath.h:1143
void normalize()
Normalize vector.
Definition: vmath.h:488
const T & operator[](int n) const
Array access operator.
Definition: vmath.h:1269
Vector3< T > lerp(T fact, const Vector3< T > &r) const
Linear interpolation of two vectors.
Definition: vmath.h:1037
Quaternion< T > & operator*=(T rhs)
Multiplication operator.
Definition: vmath.h:3112
Quaternion< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:3059
Vector4()
Creates and sets to (0,0,0,0)
Definition: vmath.h:1169
T t
Second element of vector, alias for T-coordinate.
Definition: vmath.h:622
void setRotation(const Matrix3< T > &m)
Sets rotation part (matrix 3x3) of matrix.
Definition: vmath.h:2548
const T & operator[](int n) const
Constant array access operator.
Definition: vmath.h:739
Vector2(T nx, T ny)
Creates and sets to (x,y)
Definition: vmath.h:202
Vector2< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:366
Aabb3< T > operator*(const Matrix4< T > &rhs) const
Gets transformed bounding-box by transform rhs.
Definition: vmath.h:3945
void setTranslation(const Vector3< T > &v)
Sets translation part of matrix.
Definition: vmath.h:2530
Matrix4< int > Matrix4i
Matrix 4x4 of int.
Definition: vmath.h:2940
Vector3< T > & operator+=(const Vector3< T > &rhs)
Addition operator.
Definition: vmath.h:791
void setScale(T sx, T sy, T sz)
Sets matrix scale for all axes.
Definition: vmath.h:2581
Class for four dimensional vector.
Definition: vmath.h:1107
Quaternion< T > operator+(const Quaternion< T > &rhs) const
Addition operator.
Definition: vmath.h:3036
Quaternion< T > & operator-=(const Quaternion< T > &rhs)
Subtraction operator.
Definition: vmath.h:3089
Aabb3()
Constructs invalid axes-aligned bounding-box.
Definition: vmath.h:3638
Vector4< T > operator-(const Vector4< T > &rhs) const
Subtraction operator.
Definition: vmath.h:1296
#define EPSILON
Definition: vmath.h:144
Matrix4< T > & operator=(const T *rhs)
Copy operator.
Definition: vmath.h:2627
const T & operator[](int n) const
Constant array access operator.
Definition: vmath.h:271
T r
First element of vector, alias for R-coordinate.
Definition: vmath.h:609
Vector3< float > Vector3f
Three dimensional Vector of floats.
Definition: vmath.h:1089
Vector2(const Vector2< T > &src)
Copy constructor.
Definition: vmath.h:211
Class for two dimensional vector.
Definition: vmath.h:157
T lengthSq() const
Return square of length.
Definition: vmath.h:3177
Aabb3< T > & operator*=(const Matrix4< T > &rhs)
Apply transform rhs to this bounding-box.
Definition: vmath.h:3955
Matrix3(const Matrix3< FromT > &src)
Copy casting constructor.
Definition: vmath.h:1658
Vector4(T nx, T ny, T nz, T nw)
Creates and sets to (x,y,z,z)
Definition: vmath.h:1181
Matrix4< float > Matrix4f
Matrix 4x4 of floats.
Definition: vmath.h:2936
Quaternion< T > & operator*=(const Quaternion< T > &rhs)
Multiplication operator.
Definition: vmath.h:3100
Quaternion< T > & operator=(const Quaternion< T > &rhs)
Copy operator.
Definition: vmath.h:3013
void identity()
Resets matrix to be identity matrix.
Definition: vmath.h:2165
T y
Second element of vector, alias for Y-coordinate.
Definition: vmath.h:617
Vector3< T > getScale() const
Gets matrix scale.
Definition: vmath.h:2563
static Matrix3< T > fromOde(const It *mat)
Creates rotation matrix from ODE Matrix.
Definition: vmath.h:1718
Vector4(const Vector3< T > &src, T w)
Definition: vmath.h:1205
class Vector2< double > Vector2d
Two dimensional Vector of doubles.
Definition: vmath.h:572
static Quaternion< T > fromEulerAngles(T x, T y, T z)
Creates quaternion for eulers angles.
Definition: vmath.h:3199
Vector3< T > operator=(const Vector3< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:706
Matrix4< T > operator+(const Matrix4< T > &rhs) const
Addition operator.
Definition: vmath.h:2644
Vector3< T > operator-() const
Unary negate operator.
Definition: vmath.h:966
T x
First element of vector, alias for X-coordinate.
Definition: vmath.h:165
Vector3< T > crossProduct(const Vector3< T > &rhs) const
Cross product operator.
Definition: vmath.h:848
Matrix3< T > & operator=(const Matrix3< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:1858
class Vector2< int > Vector2i
Two dimensional Vector of ints.
Definition: vmath.h:574
Matrix3< T > rotMatrix()
Converts quaternion into rotation matrix.
Definition: vmath.h:3223
Vector3< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:867
Matrix4< T > & operator=(const Matrix4< T > &rhs)
Copy operator.
Definition: vmath.h:2603
Matrix3< int > Matrix3i
Matrix 3x3 of int.
Definition: vmath.h:2106
const T & at(int x, int y) const
Get constant reference to element at position (x,y).
Definition: vmath.h:1812
Matrix4< T > & operator=(const Matrix4< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:2614
Matrix3< T > & operator=(const Matrix3< T > &rhs)
Copy operator.
Definition: vmath.h:1847
Vector4< T > & operator/=(const Vector4< T > &rhs)
Division operator.
Definition: vmath.h:1362
Vector2< T > operator*(const Vector2< T > &rhs) const
Multiplication operator.
Definition: vmath.h:303
class Vector2< float > Vector2f
Two dimensional Vector of floats.
Definition: vmath.h:570
Quaternion(const Quaternion< T > &q)
Copy constructor.
Definition: vmath.h:2973
const double epsilon
Definition: vmath.h:143
static Matrix4< T > fromColumnMajorArray(const FromT *arr)
Creates new matrix 4x4 from array that represents such matrix 4x4 as array of tightly packed elements...
Definition: vmath.h:2435
T z
Third element of vector, alias for Z-coordinate.
Definition: vmath.h:635
Vector3< T > operator-(const Vector3< T > &rhs) const
Subtraction operator.
Definition: vmath.h:764
void rotate(T ax, T ay, T az)
Rotate vector around three axis.
Definition: vmath.h:1011
Vector4< T > operator*(const Vector4< T > &rhs) const
Multiplication operator.
Definition: vmath.h:2718
Vector3< T > & operator*=(T rhs)
Multiplication operator.
Definition: vmath.h:918
Vector4< T > lerp(T fact, const Vector4< T > &r) const
Linear interpolation of two vectors.
Definition: vmath.h:1539
Quaternion< T > operator*(const Quaternion< T > &rhs) const
Multiplication operator.
Definition: vmath.h:3046
bool operator!=(const Matrix4< T > &rhs) const
Inequality test operator.
Definition: vmath.h:2471
Vector4< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:1438
void setScale(T s)
Sets matrix uniform scale values.
Definition: vmath.h:2570
T s
First element of vector, alias for S-coordinate.
Definition: vmath.h:171
std::string toString() const
Gets string representation.
Definition: vmath.h:3338
Class for three dimensional vector.
Definition: vmath.h:588
VEC2< T > max(const VEC2< T > &a, const VEC2< T > &b)
Gets vector containing maximal values of a and b coordinates.
Definition: vmath.h:3568
static Matrix4< T > createTranslation(T x, T y, T z, T w=1)
Creates translation matrix.
Definition: vmath.h:2225
Vector4< T > operator=(const Vector4< T > &rhs)
Copy operator.
Definition: vmath.h:1219
Vector4< T > operator/(const Vector4< T > &rhs) const
Division operator.
Definition: vmath.h:1314
T & at(int x, int y)
Get reference to element at position (x,y).
Definition: vmath.h:1800
Vector3(const Vector3< FromT > &src)
Copy casting constructor.
Definition: vmath.h:683
Vector2< T > & operator-=(const Vector2< T > &rhs)
Substraction operator.
Definition: vmath.h:332
Vector3< T > point(size_t i) const
Gets all 8 corner-points of bounding box.
Definition: vmath.h:3892
static Matrix4< T > createRotationAroundAxis(T xDeg, T yDeg, T zDeg)
Creates rotation matrix by rotation around axis.
Definition: vmath.h:2177
T g
Second element of vector, alias for G-coordinate.
Definition: vmath.h:1130
Vector4(const Vector3< FromT > &src, FromT w)
Definition: vmath.h:1210
Vector4< T > & operator/=(T rhs)
Division operator.
Definition: vmath.h:1486
Vector3< T > operator*(const Vector3< T > &rhs) const
Multiplication operator.
Definition: vmath.h:2731
bool operator!=(const Vector4< T > &rhs) const
Inequality test operator.
Definition: vmath.h:1390
Quaternion< T > & operator=(const Quaternion< FromT > &rhs)
Copy convert operator.
Definition: vmath.h:3025
Matrix4< T > transform() const
Converts quaternion into transformation matrix.
Definition: vmath.h:3272
Vector3< T > & operator/=(T rhs)
Division operator.
Definition: vmath.h:930
Vector4< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:1411
T dotProduct(const Vector3< T > &rhs) const
Dot product of two vectors.
Definition: vmath.h:839
Vector3< T > operator=(const Vector3< T > &rhs)
Copy operator.
Definition: vmath.h:693
void normalize()
Normalize quaternion.
Definition: vmath.h:3185
void normalize()
Normalize vector.
Definition: vmath.h:1508
Vector4< T > operator-() const
Unary negate operator.
Definition: vmath.h:1400
static Matrix4< T > createOrtho(T left, T right, T bottom, T top, T zNear, T zFar)
Creates OpenGL compatible orthographic projection matrix.
Definition: vmath.h:2366
T & operator[](int n)
Array access operator.
Definition: vmath.h:256
Matrix3< T > operator*(Matrix3< T > rhs) const
Multiplication operator.
Definition: vmath.h:1973
Vector4(const Vector4< FromT > &src)
Copy casting constructor.
Definition: vmath.h:1200
Quaternion< T > operator-(const Quaternion< T > &rhs) const
Subtraction operator.
Definition: vmath.h:3068
bool operator==(const Vector2< T > &rhs) const
Equality test operator.
Definition: vmath.h:450
static Quaternion< T > fromAxisRot(Vector3< T > axis, float angleDeg)
Creates quaternion as rotation around axis.
Definition: vmath.h:3211
Vector3< T > getTranslation() const
Definition: vmath.h:2538
Vector4< T > & operator+=(T rhs)
Addition operator.
Definition: vmath.h:1447
Aabb3(SrcT x0, SrcT y0, SrcT z0, SrcT x1, SrcT y1, SrcT z1)
Constructs axes-aligned bounding-box form two corner points (x0, y0, z0) and (x1, y1...
Definition: vmath.h:3662
bool operator==(const Matrix3< T > &rhs) const
Equality test operator.
Definition: vmath.h:1774
bool operator!=(const Vector3< T > &rhs) const
Inequality test operator.
Definition: vmath.h:956
Vector2< T > & operator*=(const Vector2< T > &rhs)
Multiplication operator.
Definition: vmath.h:343
Vector4< T > operator+(const Vector4< T > &rhs) const
Addition operator.
Definition: vmath.h:1287
T & operator[](int n)
Array access operator.
Definition: vmath.h:1249
Quaternion(T w_, const Vector3< T > &v_)
Creates quaternion object from real part w_ and complex part v_.
Definition: vmath.h:2992
Vector2< T > & operator=(const Vector2< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:232
void invalidate()
Makes this bounding-box invalid.
Definition: vmath.h:3714
T & operator()(int i, int j)
Get reference to element at position (i,j), with math matrix notation.
Definition: vmath.h:2506
Vector4< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:1420
T length() const
Get length of vector.
Definition: vmath.h:480
std::string toString() const
Gets string representation.
Definition: vmath.h:2926
Vector3< T > & operator-=(const Vector3< T > &rhs)
Subtraction operator.
Definition: vmath.h:803
Vector2< T > operator-() const
Unary negate operator.
Definition: vmath.h:470
static Matrix4< T > createLookAt(const Vector3< T > &eyePos, const Vector3< T > ¢erPos, const Vector3< T > &upDir)
Creates new view matrix to look from specified position eyePos to specified position centerPos...
Definition: vmath.h:2261
Vector4< T > operator*(const Vector4< T > rhs) const
Multiplication operator.
Definition: vmath.h:1305
#define DEG2RAD(x)
Definition: vmath.h:140
Matrix4< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:2705
Vector3< int > Vector3i
Three dimensional Vector of ints.
Definition: vmath.h:1093
Vector3(T nx, T ny, T nz)
Creates and sets to (x,y,z)
Definition: vmath.h:664
VEC2< T > min(const VEC2< T > &a, const VEC2< T > &b)
Gets vector containing minimal values of a and b coordinates.
Definition: vmath.h:3538
T g
Second element of vector, alias for G-coordinate.
Definition: vmath.h:627
Quaternion< float > Quatf
Definition: vmath.h:3503
Quaternion< T > operator~() const
Unary conjugate operator.
Definition: vmath.h:3156
Vector3< T > size() const
Gets diagonal size of bounding-box.
Definition: vmath.h:3874
Aabb3< T > intersection(const Aabb3< SrcT > &other) const
Gets result of intersection of this bounding-box with other bounding-box.
Definition: vmath.h:3840
Vector3< T > & operator-=(T rhs)
Subtraction operator.
Definition: vmath.h:906
static Quaternion< T > fromMatrix(const Matrix3< T > &m)
Creates quaternion from rotation matrix.
Definition: vmath.h:3411
Vector3< T > extent() const
Gets extent of bounding-box.
Definition: vmath.h:3867
Aabb3< float > Aabb3f
Definition: vmath.h:4022
Vector3< T > max
Position of Max corner of bounding box.
Definition: vmath.h:3632