vmath  vmath-0.13
vmath.h
Go to the documentation of this file.
1 /* -*- C++ -*- */
119 // Modified 2011-06-12, Davide Bacchet (davide.bacchet at gmail dot com)
120 // added () operators with standard matrix notation (opposite wrt at() ).
121 #ifndef __vmath_Header_File__
122 #define __vmath_Header_File__
123 
124 #include <cmath>
125 #include <cstring>
126 #include <iostream>
127 #include <sstream>
128 #include <string>
129 #include <cassert>
130 
131 #ifdef VMATH_NAMESPACE
132 namespace VMATH_NAMESPACE
133 {
134 #endif
135 
136 #ifndef M_PI
137 #define M_PI 3.14159265358979323846 /* pi */
138 #endif
139 
140 #define DEG2RAD(x) ((x * M_PI) / 180.0)
141 //#define EPSILON (4.37114e-07)
142 
143 const double epsilon = 4.37114e-05;
144 #define EPSILON epsilon
145 
156 template<class T>
157 class Vector2
158 {
159 public:
160  union
161  {
165  T x;
166 
171  T s;
172  };
173 
174  union
175  {
179  T y;
180 
185  T t;
186  };
187 
188  //----------------[ constructors ]--------------------------
193  : x(0), y(0)
194  {
195  }
196 
202  Vector2(T nx, T ny)
203  : x(nx), y(ny)
204  {
205  }
206 
211  Vector2(const Vector2<T>& src)
212  : x(src.x), y(src.y)
213  {
214  }
215 
220  template<class FromT>
222  : x(static_cast<T>(src.x)), y(static_cast<T>(src.y))
223  {
224  }
225 
226  //----------------[ access operators ]-------------------
231  template<class FromT>
233  {
234  x = static_cast<T>(rhs.x);
235  y = static_cast<T>(rhs.y);
236  return *this;
237  }
238 
244  {
245  x = rhs.x;
246  y = rhs.y;
247  return *this;
248  }
249 
256  T& operator[](int n)
257  {
258  assert(n >= 0 && n <= 1);
259  if (0 == n)
260  return x;
261  else
262  return y;
263  }
264 
271  const T& operator[](int n) const
272  {
273  assert(n >= 0 && n <= 1);
274  if (0 == n)
275  return x;
276  else
277  return y;
278  }
279 
280  //---------------[ vector aritmetic operator ]--------------
285  Vector2<T> operator+(const Vector2<T>& rhs) const
286  {
287  return Vector2<T>(x + rhs.x, y + rhs.y);
288  }
289 
294  Vector2<T> operator-(const Vector2<T>& rhs) const
295  {
296  return Vector2<T>(x - rhs.x, y - rhs.y);
297  }
298 
303  Vector2<T> operator*(const Vector2<T>& rhs) const
304  {
305  return Vector2<T>(x * rhs.x, y * rhs.y);
306  }
307 
312  Vector2<T> operator/(const Vector2<T>& rhs) const
313  {
314  return Vector2<T>(x / rhs.x, y / rhs.y);
315  }
316 
322  {
323  x += rhs.x;
324  y += rhs.y;
325  return *this;
326  }
327 
333  {
334  x -= rhs.x;
335  y -= rhs.y;
336  return *this;
337  }
338 
344  {
345  x *= rhs.x;
346  y *= rhs.y;
347  return *this;
348  }
349 
355  {
356  x /= rhs.x;
357  y /= rhs.y;
358  return *this;
359  }
360 
361  //--------------[ scalar vector operator ]--------------------
366  Vector2<T> operator+(T rhs) const
367  {
368  return Vector2<T>(x + rhs, y + rhs);
369  }
370 
375  Vector2<T> operator-(T rhs) const
376  {
377  return Vector2<T>(x - rhs, y - rhs);
378  }
379 
384  Vector2<T> operator*(T rhs) const
385  {
386  return Vector2<T>(x * rhs, y * rhs);
387  }
388 
393  Vector2<T> operator/(T rhs) const
394  {
395  return Vector2<T>(x / rhs, y / rhs);
396  }
397 
403  {
404  x += rhs;
405  y += rhs;
406  return *this;
407  }
408 
414  {
415  x -= rhs;
416  y -= rhs;
417  return *this;
418  }
419 
425  {
426  x *= rhs;
427  y *= rhs;
428  return *this;
429  }
430 
436  {
437  x /= rhs;
438  y /= rhs;
439  return *this;
440  }
441 
442  //--------------[ equality operator ]------------------------
450  bool operator==(const Vector2<T>& rhs) const
451  {
452  return (std::abs(x - rhs.x) < EPSILON) && (std::abs(y - rhs.y) < EPSILON);
453  }
454 
460  bool operator!=(const Vector2<T>& rhs) const
461  {
462  return !(*this == rhs);
463  }
464 
465  //-------------[ unary operations ]--------------------------
471  {
472  return Vector2<T>(-x, -y);
473  }
474 
475  //-------------[ size operations ]---------------------------
480  T length() const
481  {
482  return (T) std::sqrt(x * x + y * y);
483  }
484 
488  void normalize()
489  {
490  T s = length();
491  x /= s;
492  y /= s;
493  }
494 
502  T lengthSq() const
503  {
504  return x * x + y * y;
505  }
506 
507  //--------------[ misc. operations ]-----------------------
517  Vector2<T> lerp(T fact, const Vector2<T>& r) const
518  {
519  return (*this) + (r - (*this)) * fact;
520  }
521 
522  //-------------[ conversion ]-----------------------------
528  operator T*()
529  {
530  return (T*) this;
531  }
537  operator const T*() const
538  {
539  return (const T*) this;
540  }
541 
542  //-------------[ output operator ]------------------------
549  friend std::ostream& operator<<(std::ostream& lhs, const Vector2<T>& rhs)
550  {
551  lhs << "[" << rhs.x << "," << rhs.y << "]";
552  return lhs;
553  }
554 
558  std::string toString() const
559  {
560  std::ostringstream oss;
561  oss << *this;
562  return oss.str();
563  }
564 };
565 
566 //--------------------------------------
567 // Typedef shortcuts for 2D vector
568 //-------------------------------------
570 typedef class Vector2<float> Vector2f;
572 typedef class Vector2<double> Vector2d;
574 typedef class Vector2<int> Vector2i;
575 
587 template<class T>
588 class Vector3
589 {
590 public:
591  //T x, y, z;
592  union
593  {
597  T x;
598 
603  T s;
604 
609  T r;
610  };
611 
612  union
613  {
617  T y;
622  T t;
627  T g;
628  };
629 
630  union
631  {
635  T z;
636 
641  T u;
646  T b;
647  };
648 
649  //----------------[ constructors ]--------------------------
654  : x(0), y(0), z(0)
655  {
656  }
657 
664  Vector3(T nx, T ny, T nz)
665  : x(nx), y(ny), z(nz)
666  {
667  }
668 
673  Vector3(const Vector3<T>& src)
674  : x(src.x), y(src.y), z(src.z)
675  {
676  }
677 
682  template<class FromT>
684  : x(static_cast<T>(src.x)), y(static_cast<T>(src.y)), z(static_cast<T>(src.z))
685  {
686  }
687 
688  //----------------[ access operators ]-------------------
694  {
695  x = rhs.x;
696  y = rhs.y;
697  z = rhs.z;
698  return *this;
699  }
700 
705  template<class FromT>
707  {
708  x = static_cast<T>(rhs.x);
709  y = static_cast<T>(rhs.y);
710  z = static_cast<T>(rhs.z);
711  return *this;
712  }
713 
721  T & operator[](int n)
722  {
723  assert(n >= 0 && n <= 2);
724  if (0 == n)
725  return x;
726  else if (1 == n)
727  return y;
728  else
729  return z;
730  }
731 
739  const T & operator[](int n) const
740  {
741  assert(n >= 0 && n <= 2);
742  if (0 == n)
743  return x;
744  else if (1 == n)
745  return y;
746  else
747  return z;
748  }
749 
750  //---------------[ vector arithmetic operator ]--------------
755  Vector3<T> operator+(const Vector3<T>& rhs) const
756  {
757  return Vector3<T>(x + rhs.x, y + rhs.y, z + rhs.z);
758  }
759 
764  Vector3<T> operator-(const Vector3<T>& rhs) const
765  {
766  return Vector3<T>(x - rhs.x, y - rhs.y, z - rhs.z);
767  }
768 
773  Vector3<T> operator*(const Vector3<T>& rhs) const
774  {
775  return Vector3<T>(x * rhs.x, y * rhs.y, z * rhs.z);
776  }
777 
782  Vector3<T> operator/(const Vector3<T>& rhs) const
783  {
784  return Vector3<T>(x / rhs.x, y / rhs.y, z / rhs.z);
785  }
786 
792  {
793  x += rhs.x;
794  y += rhs.y;
795  z += rhs.z;
796  return *this;
797  }
798 
804  {
805  x -= rhs.x;
806  y -= rhs.y;
807  z -= rhs.z;
808  return *this;
809  }
810 
816  {
817  x *= rhs.x;
818  y *= rhs.y;
819  z *= rhs.z;
820  return *this;
821  }
822 
828  {
829  x /= rhs.x;
830  y /= rhs.y;
831  z /= rhs.z;
832  return *this;
833  }
834 
839  T dotProduct(const Vector3<T>& rhs) const
840  {
841  return x * rhs.x + y * rhs.y + z * rhs.z;
842  }
843 
849  {
850  return Vector3<T>(y * rhs.z - rhs.y * z, z * rhs.x - rhs.z * x, x * rhs.y - rhs.x * y);
851  }
852 
853  //--------------[ scalar vector operator ]--------------------
858  Vector3<T> operator+(T rhs) const
859  {
860  return Vector3<T>(x + rhs, y + rhs, z + rhs);
861  }
862 
867  Vector3<T> operator-(T rhs) const
868  {
869  return Vector3<T>(x - rhs, y - rhs, z - rhs);
870  }
871 
876  Vector3<T> operator*(T rhs) const
877  {
878  return Vector3<T>(x * rhs, y * rhs, z * rhs);
879  }
880 
885  Vector3<T> operator/(T rhs) const
886  {
887  return Vector3<T>(x / rhs, y / rhs, z / rhs);
888  }
889 
895  {
896  x += rhs;
897  y += rhs;
898  z += rhs;
899  return *this;
900  }
901 
907  {
908  x -= rhs;
909  y -= rhs;
910  z -= rhs;
911  return *this;
912  }
913 
919  {
920  x *= rhs;
921  y *= rhs;
922  z *= rhs;
923  return *this;
924  }
925 
931  {
932  x /= rhs;
933  y /= rhs;
934  z /= rhs;
935  return *this;
936  }
937 
938  //--------------[ Equality operator ]------------------------
946  bool operator==(const Vector3<T>& rhs) const
947  {
948  return std::fabs(x - rhs.x) < EPSILON && std::fabs(y - rhs.y) < EPSILON && std::fabs(z - rhs.z) < EPSILON;
949  }
950 
956  bool operator!=(const Vector3<T>& rhs) const
957  {
958  return !(*this == rhs);
959  }
960 
961  //-------------[ unary operations ]--------------------------
967  {
968  return Vector3<T>(-x, -y, -z);
969  }
970 
971  //-------------[ size operations ]---------------------------
976  T length() const
977  {
978  return (T) std::sqrt(x * x + y * y + z * z);
979  }
980 
988  T lengthSq() const
989  {
990  return x * x + y * y + z * z;
991  }
992 
996  void normalize()
997  {
998  T s = length();
999  x /= s;
1000  y /= s;
1001  z /= s;
1002  }
1003 
1004  //------------[ other operations ]---------------------------
1011  void rotate(T ax, T ay, T az)
1012  {
1013  T a = cos(DEG2RAD(ax));
1014  T b = sin(DEG2RAD(ax));
1015  T c = cos(DEG2RAD(ay));
1016  T d = sin(DEG2RAD(ay));
1017  T e = cos(DEG2RAD(az));
1018  T f = sin(DEG2RAD(az));
1019  T nx = c * e * x - c * f * y + d * z;
1020  T ny = (a * f + b * d * e) * x + (a * e - b * d * f) * y - b * c * z;
1021  T nz = (b * f - a * d * e) * x + (a * d * f + b * e) * y + a * c * z;
1022  x = nx;
1023  y = ny;
1024  z = nz;
1025 
1026  }
1027 
1037  Vector3<T> lerp(T fact, const Vector3<T>& r) const
1038  {
1039  return (*this) + (r - (*this)) * fact;
1040  }
1041 
1042  //-------------[ conversion ]-----------------------------
1043 
1049  operator T*()
1050  {
1051  return (T*) this;
1052  }
1053 
1059  operator const T*() const
1060  {
1061  return (const T*) this;
1062  }
1063 
1064  //-------------[ output operator ]------------------------
1071  friend std::ostream& operator<<(std::ostream& lhs, const Vector3<T> rhs)
1072  {
1073  lhs << "[" << rhs.x << "," << rhs.y << "," << rhs.z << "]";
1074  return lhs;
1075  }
1076 
1080  std::string toString() const
1081  {
1082  std::ostringstream oss;
1083  oss << *this;
1084  return oss.str();
1085  }
1086 };
1087 
1094 
1106 template<class T>
1107 class Vector4
1108 {
1109 public:
1110 
1111  union
1112  {
1117  T r;
1121  T x;
1122  };
1123 
1124  union
1125  {
1130  T g;
1134  T y;
1135  };
1136 
1137  union
1138  {
1143  T b;
1147  T z;
1148  };
1149 
1150  union
1151  {
1156  T a;
1162  T w;
1163  };
1164 
1165  //----------------[ constructors ]--------------------------
1170  : x(0), y(0), z(0), w(0)
1171  {
1172  }
1173 
1181  Vector4(T nx, T ny, T nz, T nw)
1182  : x(nx), y(ny), z(nz), w(nw)
1183  {
1184  }
1185 
1190  Vector4(const Vector4<T>& src)
1191  : x(src.x), y(src.y), z(src.z), w(src.w)
1192  {
1193  }
1194 
1199  template<class FromT>
1201  : x(static_cast<T>(src.x)), y(static_cast<T>(src.y)), z(static_cast<T>(src.z)), w(static_cast<T>(src.w))
1202  {
1203  }
1204 
1205  Vector4(const Vector3<T>& src, T w)
1206  : x(src.x), y(src.y), z(src.z), w(w)
1207  {}
1208 
1209  template <typename FromT>
1210  Vector4(const Vector3<FromT>& src, FromT w)
1211  : x(static_cast<T>(src.x)), y(static_cast<T>(src.y)), z(static_cast<T>(src.z)), w(static_cast<T>(w))
1212  {}
1213 
1214  //----------------[ access operators ]-------------------
1220  {
1221  x = rhs.x;
1222  y = rhs.y;
1223  z = rhs.z;
1224  w = rhs.w;
1225  return *this;
1226  }
1227 
1232  template<class FromT>
1234  {
1235  x = static_cast<T>(rhs.x);
1236  y = static_cast<T>(rhs.y);
1237  z = static_cast<T>(rhs.z);
1238  w = static_cast<T>(rhs.w);
1239  return *this;
1240  }
1241 
1249  T & operator[](int n)
1250  {
1251  assert(n >= 0 && n <= 3);
1252  if (0 == n)
1253  return x;
1254  else if (1 == n)
1255  return y;
1256  else if (2 == n)
1257  return z;
1258  else
1259  return w;
1260  }
1261 
1269  const T & operator[](int n) const
1270  {
1271  assert(n >= 0 && n <= 3);
1272  if (0 == n)
1273  return x;
1274  else if (1 == n)
1275  return y;
1276  else if (2 == n)
1277  return z;
1278  else
1279  return w;
1280  }
1281 
1282  //---------------[ vector aritmetic operator ]--------------
1287  Vector4<T> operator+(const Vector4<T>& rhs) const
1288  {
1289  return Vector4<T>(x + rhs.x, y + rhs.y, z + rhs.z, w + rhs.w);
1290  }
1291 
1296  Vector4<T> operator-(const Vector4<T>& rhs) const
1297  {
1298  return Vector4<T>(x - rhs.x, y - rhs.y, z - rhs.z, w - rhs.w);
1299  }
1300 
1306  {
1307  return Vector4<T>(x * rhs.x, y * rhs.y, z * rhs.z, w * rhs.w);
1308  }
1309 
1314  Vector4<T> operator/(const Vector4<T>& rhs) const
1315  {
1316  return Vector4<T>(x / rhs.x, y / rhs.y, z / rhs.z, w / rhs.w);
1317  }
1318 
1324  {
1325  x += rhs.x;
1326  y += rhs.y;
1327  z += rhs.z;
1328  w += rhs.w;
1329  return *this;
1330  }
1331 
1337  {
1338  x -= rhs.x;
1339  y -= rhs.y;
1340  z -= rhs.z;
1341  w -= rhs.w;
1342  return *this;
1343  }
1344 
1350  {
1351  x *= rhs.x;
1352  y *= rhs.y;
1353  z *= rhs.z;
1354  w *= rhs.w;
1355  return *this;
1356  }
1357 
1363  {
1364  x /= rhs.x;
1365  y /= rhs.y;
1366  z /= rhs.z;
1367  w /= rhs.w;
1368  return *this;
1369  }
1370 
1371  //--------------[ equiality operator ]------------------------
1379  bool operator==(const Vector4<T>& rhs) const
1380  {
1381  return std::fabs(x - rhs.x) < EPSILON && std::fabs(y - rhs.y) < EPSILON && std::fabs(z - rhs.z) < EPSILON
1382  && std::fabs(w - rhs.w) < EPSILON;
1383  }
1384 
1390  bool operator!=(const Vector4<T>& rhs) const
1391  {
1392  return !(*this == rhs);
1393  }
1394 
1395  //-------------[ unary operations ]--------------------------
1401  {
1402  return Vector4<T>(-x, -y, -z, -w);
1403  }
1404 
1405  //--------------[ scalar vector operator ]--------------------
1406 
1411  Vector4<T> operator+(T rhs) const
1412  {
1413  return Vector4<T>(x + rhs, y + rhs, z + rhs, w + rhs);
1414  }
1415 
1420  Vector4<T> operator-(T rhs) const
1421  {
1422  return Vector4<T>(x - rhs, y - rhs, z - rhs, w - rhs);
1423  }
1424 
1429  Vector4<T> operator*(T rhs) const
1430  {
1431  return Vector4<T>(x * rhs, y * rhs, z * rhs, w * rhs);
1432  }
1433 
1438  Vector4<T> operator/(T rhs) const
1439  {
1440  return Vector4<T>(x / rhs, y / rhs, z / rhs, w / rhs);
1441  }
1442 
1448  {
1449  x += rhs;
1450  y += rhs;
1451  z += rhs;
1452  w += rhs;
1453  return *this;
1454  }
1455 
1461  {
1462  x -= rhs;
1463  y -= rhs;
1464  z -= rhs;
1465  w -= rhs;
1466  return *this;
1467  }
1468 
1474  {
1475  x *= rhs;
1476  y *= rhs;
1477  z *= rhs;
1478  w *= rhs;
1479  return *this;
1480  }
1481 
1487  {
1488  x /= rhs;
1489  y /= rhs;
1490  z /= rhs;
1491  w /= rhs;
1492  return *this;
1493  }
1494 
1495  //-------------[ size operations ]---------------------------
1500  T length() const
1501  {
1502  return (T) std::sqrt(x * x + y * y + z * z + w * w);
1503  }
1504 
1508  void normalize()
1509  {
1510  T s = length();
1511  x /= s;
1512  y /= s;
1513  z /= s;
1514  w /= s;
1515  }
1516 
1524  T lengthSq() const
1525  {
1526  return x * x + y * y + z * z + w * w;
1527  }
1528 
1529  //--------------[ misc. operations ]-----------------------
1539  Vector4<T> lerp(T fact, const Vector4<T>& r) const
1540  {
1541  return (*this) + (r - (*this)) * fact;
1542  }
1543 
1544  //-------------[ conversion ]-----------------------------
1545 
1551  operator T*()
1552  {
1553  return (T*) this;
1554  }
1555 
1561  operator const T*() const
1562  {
1563  return (const T*) this;
1564  }
1565 
1571  Vector3<T> xyz() const
1572  {
1573  if (w == 0 || w == 1)
1574  return Vector3<T>(x,y,z);
1575 
1576  const T invW = 1.0 / w;
1577  return Vector3<T>(x * invW, y * invW, z * invW);
1578  }
1579 
1580  //-------------[ output operator ]------------------------
1587  friend std::ostream& operator<<(std::ostream& lhs, const Vector4<T>& rhs)
1588  {
1589  lhs << "[" << rhs.x << "," << rhs.y << "," << rhs.z << "," << rhs.w << "]";
1590  return lhs;
1591  }
1592 
1596  std::string toString() const
1597  {
1598  std::ostringstream oss;
1599  oss << *this;
1600  return oss.str();
1601  }
1602 
1603 };
1604 
1611 
1618 template<class T>
1619 class Matrix3
1620 {
1621 public:
1623  T data[9];
1624 
1625  //--------------------------[ constructors ]-------------------------------
1630  {
1631  for (int i = 0; i < 9; i++)
1632  data[i] = (i % 4) ? 0 : 1;
1633  }
1634 
1639  Matrix3(const T * dt)
1640  {
1641  std::memcpy(data, dt, sizeof(T) * 9);
1642  }
1643 
1648  Matrix3(const Matrix3<T>& src)
1649  {
1650  std::memcpy(data, src.data, sizeof(T) * 9);
1651  }
1652 
1657  template<class FromT>
1659  {
1660  for (int i = 0; i < 9; i++)
1661  {
1662  data[i] = static_cast<T>(src.data[i]);
1663  }
1664  }
1665 
1669  void identity()
1670  {
1671  for (int i = 0; i < 9; i++)
1672  data[i] = (i % 4) ? 0 : 1;
1673  }
1674 
1681  static Matrix3<T> createRotationAroundAxis(T xDeg, T yDeg, T zDeg)
1682  {
1683  T xRads(DEG2RAD(xDeg));
1684  T yRads(DEG2RAD(yDeg));
1685  T zRads(DEG2RAD(zDeg));
1686 
1687  Matrix3<T> ma, mb, mc;
1688  float ac = cos(xRads);
1689  float as = sin(xRads);
1690  float bc = cos(yRads);
1691  float bs = sin(yRads);
1692  float cc = cos(zRads);
1693  float cs = sin(zRads);
1694 
1695  ma.at(1, 1) = ac;
1696  ma.at(2, 1) = as;
1697  ma.at(1, 2) = -as;
1698  ma.at(2, 2) = ac;
1699 
1700  mb.at(0, 0) = bc;
1701  mb.at(2, 0) = -bs;
1702  mb.at(0, 2) = bs;
1703  mb.at(2, 2) = bc;
1704 
1705  mc.at(0, 0) = cc;
1706  mc.at(1, 0) = cs;
1707  mc.at(0, 1) = -cs;
1708  mc.at(1, 1) = cc;
1709 
1710  Matrix3<T> ret = ma * mb * mc;
1711  return ret;
1712  }
1713 
1717  template<class It>
1718  static Matrix3<T> fromOde(const It* mat)
1719  {
1720  Matrix3<T> ret;
1721  for (int i = 0; i < 3; i++)
1722  {
1723  for (int j = 0; j < 3; j++)
1724  {
1725  ret.at(i, j) = static_cast<T>(mat[j * 4 + i]);
1726  }
1727  }
1728  return ret;
1729  }
1730 
1737  template<class FromT>
1738  static Matrix3<T> fromRowMajorArray(const FromT* arr)
1739  {
1740  const T retData[] =
1741  { static_cast<T>(arr[0]), static_cast<T>(arr[3]), static_cast<T>(arr[6]), static_cast<T>(arr[1]),
1742  static_cast<T>(arr[4]), static_cast<T>(arr[7]), static_cast<T>(arr[2]), static_cast<T>(arr[5]),
1743  static_cast<T>(arr[8]) };
1744 
1745  return retData;
1746  }
1747 
1754  template<class FromT>
1755  static Matrix3<T> fromColumnMajorArray(const FromT* arr)
1756  {
1757  const T retData[] =
1758  { static_cast<T>(arr[0]), static_cast<T>(arr[1]), static_cast<T>(arr[2]), static_cast<T>(arr[3]),
1759  static_cast<T>(arr[4]), static_cast<T>(arr[5]), static_cast<T>(arr[6]), static_cast<T>(arr[7]),
1760  static_cast<T>(arr[8]) };
1761 
1762  return retData;
1763  }
1764 
1765  //---------------------[ equiality operators ]------------------------------
1774  bool operator==(const Matrix3<T>& rhs) const
1775  {
1776  for (int i = 0; i < 9; i++)
1777  {
1778  if (std::fabs(data[i] - rhs.data[i]) >= EPSILON)
1779  return false;
1780  }
1781  return true;
1782  }
1783 
1789  bool operator!=(const Matrix3<T>& rhs) const
1790  {
1791  return !(*this == rhs);
1792  }
1793 
1794  //---------------------[ access operators ]---------------------------------
1800  T& at(int x, int y)
1801  {
1802  assert(x >= 0 && x < 3);
1803  assert(y >= 0 && y < 3);
1804  return data[x * 3 + y];
1805  }
1806 
1812  const T& at(int x, int y) const
1813  {
1814  assert(x >= 0 && x < 3);
1815  assert(y >= 0 && y < 3);
1816  return data[x * 3 + y];
1817  }
1818 
1824  T& operator()(int i, int j)
1825  {
1826  assert(i >= 1 && i <= 3);
1827  assert(j >= 1 && j <= 3);
1828  return data[(j - 1) * 3 + i - 1];
1829  }
1830 
1836  const T& operator()(int i, int j) const
1837  {
1838  assert(i >= 1 && i <= 3);
1839  assert(j >= 1 && j <= 3);
1840  return data[(j - 1) * 3 + i - 1];
1841  }
1842 
1848  {
1849  std::memcpy(data, rhs.data, sizeof(T) * 9);
1850  return *this;
1851  }
1852 
1857  template<class FromT>
1859  {
1860  for (int i = 0; i < 9; i++)
1861  {
1862  data[i] = static_cast<T>(rhs.data[i]);
1863  }
1864  return *this;
1865  }
1866 
1871  Matrix3<T>& operator=(const T* rhs)
1872  {
1873  std::memcpy(data, rhs, sizeof(T) * 9);
1874  return *this;
1875  }
1876 
1877  /*Matrix3<T> & operator=(const double* m)
1878  {
1879  for (int i = 0; i < 9; i++) data[i] = (T)m[i];
1880  return * this;
1881  }*/
1882 
1883  //--------------------[ matrix with matrix operations ]---------------------
1888  Matrix3<T> operator+(const Matrix3<T>& rhs) const
1889  {
1890  Matrix3<T> ret;
1891  for (int i = 0; i < 9; i++)
1892  ret.data[i] = data[i] + rhs.data[i];
1893  return ret;
1894  }
1895 
1900  Matrix3<T> operator-(const Matrix3<T>& rhs) const
1901  {
1902  Matrix3<T> ret;
1903  for (int i = 0; i < 9; i++)
1904  ret.data[i] = data[i] - rhs.data[i];
1905  return ret;
1906  }
1907 
1908  //--------------------[ matrix with scalar operations ]---------------------
1913  Matrix3<T> operator+(T rhs) const
1914  {
1915  Matrix3<T> ret;
1916  for (int i = 0; i < 9; i++)
1917  ret.data[i] = data[i] + rhs;
1918  return ret;
1919  }
1920 
1925  Matrix3<T> operator-(T rhs) const
1926  {
1927  Matrix3<T> ret;
1928  for (int i = 0; i < 9; i++)
1929  ret.data[i] = data[i] - rhs;
1930  return ret;
1931  }
1932 
1937  Matrix3<T> operator*(T rhs) const
1938  {
1939  Matrix3<T> ret;
1940  for (int i = 0; i < 9; i++)
1941  ret.data[i] = data[i] * rhs;
1942  return ret;
1943  }
1944 
1949  Matrix3<T> operator/(T rhs) const
1950  {
1951  Matrix3<T> ret;
1952  for (int i = 0; i < 9; i++)
1953  ret.data[i] = data[i] / rhs;
1954  return ret;
1955  }
1956 
1957  //--------------------[ multiply operators ]--------------------------------
1962  Vector3<T> operator*(const Vector3<T>& rhs) const
1963  {
1964  return Vector3<T>(data[0] * rhs.x + data[3] * rhs.y + data[6] * rhs.z,
1965  data[1] * rhs.x + data[4] * rhs.y + data[7] * rhs.z,
1966  data[2] * rhs.x + data[5] * rhs.y + data[8] * rhs.z);
1967  }
1968 
1974  {
1975  Matrix3<T> w;
1976  for (int i = 0; i < 3; i++)
1977  {
1978  for (int j = 0; j < 3; j++)
1979  {
1980  T n = 0;
1981  for (int k = 0; k < 3; k++)
1982  n += rhs.at(i, k) * at(k, j);
1983  w.at(i, j) = n;
1984  }
1985  }
1986  return w;
1987 
1988  }
1989 
1990  //---------------------------[ misc operations ]----------------------------
1995  {
1996  Matrix3<T> ret;
1997  for (int i = 0; i < 3; i++)
1998  {
1999  for (int j = 0; j < 3; j++)
2000  {
2001  ret.at(i, j) = at(j, i);
2002  }
2003  }
2004  return ret;
2005  }
2006 
2016  Matrix3<T> lerp(T fact, const Matrix3<T>& rhs) const
2017  {
2018  Matrix3<T> ret = (*this) + (rhs - (*this)) * fact;
2019  return ret;
2020  }
2021 
2022  T det()
2023  {
2024  return +at(0, 0) * at(1, 1) * at(2, 2) + at(0, 1) * at(1, 2) * at(2, 0) + at(0, 2) * at(1, 0) * at(2, 1)
2025  - at(0, 0) * at(1, 2) * at(2, 1) - at(0, 1) * at(1, 0) * at(2, 2) - at(0, 2) * at(1, 1) * at(2, 0);
2026  }
2027 
2033  {
2034  Matrix3<T> ret;
2035  ret.at(0, 0) = at(1, 1) * at(2, 2) - at(2, 1) * at(1, 2);
2036  ret.at(0, 1) = at(2, 1) * at(0, 2) - at(0, 1) * at(2, 2);
2037  ret.at(0, 2) = at(0, 1) * at(1, 2) - at(1, 1) * at(0, 2);
2038  ret.at(1, 0) = at(2, 0) * at(1, 2) - at(1, 0) * at(2, 2);
2039  ret.at(1, 1) = at(0, 0) * at(2, 2) - at(2, 0) * at(0, 2);
2040  ret.at(1, 2) = at(1, 0) * at(0, 2) - at(0, 0) * at(1, 2);
2041  ret.at(2, 0) = at(1, 0) * at(2, 1) - at(2, 0) * at(1, 1);
2042  ret.at(2, 1) = at(2, 0) * at(0, 1) - at(0, 0) * at(2, 1);
2043  ret.at(2, 2) = at(0, 0) * at(1, 1) - at(1, 0) * at(0, 1);
2044  return ret * (1.0f / det());
2045  }
2046 
2047  //-------------[ conversion ]-----------------------------
2048 
2054  operator T*()
2055  {
2056  return (T*) data;
2057  }
2058 
2064  operator const T*() const
2065  {
2066  return (const T*) data;
2067  }
2068 
2069  //----------[ output operator ]----------------------------
2076  friend std::ostream& operator <<(std::ostream& lhs, const Matrix3<T>& rhs)
2077  {
2078  for (int i = 0; i < 3; i++)
2079  {
2080  lhs << "|\t";
2081  for (int j = 0; j < 3; j++)
2082  {
2083  lhs << rhs.at(j, i) << "\t";
2084  }
2085  lhs << "|" << std::endl;
2086  }
2087  return lhs;
2088  }
2089 
2093  std::string toString() const
2094  {
2095  std::ostringstream oss;
2096  oss << *this;
2097  return oss.str();
2098  }
2099 };
2100 
2107 
2114 template<class T>
2115 class Matrix4
2116 {
2117 public:
2119  T data[16];
2120 
2121  //--------------------------[ constructors ]-------------------------------
2126  {
2127  for (int i = 0; i < 16; i++)
2128  data[i] = (i % 5) ? 0 : 1;
2129  }
2130 
2135  Matrix4(const T * dt)
2136  {
2137  std::memcpy(data, dt, sizeof(T) * 16);
2138  }
2139 
2144  Matrix4(const Matrix4<T>& src)
2145  {
2146  std::memcpy(data, src.data, sizeof(T) * 16);
2147  }
2148 
2153  template<class FromT>
2155  {
2156  for (int i = 0; i < 16; i++)
2157  {
2158  data[i] = static_cast<T>(src.data[i]);
2159  }
2160  }
2161 
2165  void identity()
2166  {
2167  for (int i = 0; i < 16; i++)
2168  data[i] = (i % 5) ? 0 : 1;
2169  }
2170 
2177  static Matrix4<T> createRotationAroundAxis(T xDeg, T yDeg, T zDeg)
2178  {
2179  T xRads(DEG2RAD(xDeg));
2180  T yRads(DEG2RAD(yDeg));
2181  T zRads(DEG2RAD(zDeg));
2182 
2183  Matrix4<T> ma, mb, mc;
2184  float ac = cos(xRads);
2185  float as = sin(xRads);
2186  float bc = cos(yRads);
2187  float bs = sin(yRads);
2188  float cc = cos(zRads);
2189  float cs = sin(zRads);
2190 
2191  ma.at(1, 1) = ac;
2192  ma.at(2, 1) = as;
2193  ma.at(1, 2) = -as;
2194  ma.at(2, 2) = ac;
2195 
2196  mb.at(0, 0) = bc;
2197  mb.at(2, 0) = -bs;
2198  mb.at(0, 2) = bs;
2199  mb.at(2, 2) = bc;
2200 
2201  mc.at(0, 0) = cc;
2202  mc.at(1, 0) = cs;
2203  mc.at(0, 1) = -cs;
2204  mc.at(1, 1) = cc;
2205 
2206  /*std::cout << "RotVec = " << a << "," << b << "," << c << std::endl;
2207  std::cout << "Rx = " << std::endl << ma;
2208  std::cout << "Ry = " << std::endl << mb;
2209  std::cout << "Rz = " << std::endl << mc;*/
2210 
2211  Matrix4<T> ret = ma * mb * mc;
2212  //std::cout << "Result = " << std::endl << ma * (mb * mc);
2213 
2214  return ret;
2215  }
2216 
2218 
2225  static Matrix4<T> createTranslation(T x, T y, T z, T w = 1)
2226  {
2227  Matrix4 ret;
2228  ret.at(3, 0) = x;
2229  ret.at(3, 1) = y;
2230  ret.at(3, 2) = z;
2231  ret.at(3, 3) = w;
2232 
2233  return ret;
2234  }
2235 
2244  static Matrix4<T> createScale(T sx, T sy, T sz)
2245  {
2246  Matrix4<T> ret;
2247  ret.at(0,0) = sx;
2248  ret.at(1,1) = sy;
2249  ret.at(2,2) = sz;
2250 
2251  return ret;
2252  }
2253 
2261  static Matrix4<T> createLookAt(const Vector3<T>& eyePos, const Vector3<T>& centerPos, const Vector3<T>& upDir)
2262  {
2263  Vector3<T> forward, side, up;
2264  Matrix4<T> m;
2265 
2266  forward = centerPos - eyePos;
2267  up = upDir;
2268 
2269  forward.normalize();
2270 
2271  // Side = forward x up
2272  side = forward.crossProduct(up);
2273  side.normalize();
2274 
2275  // Recompute up as: up = side x forward
2276  up = side.crossProduct(forward);
2277 
2278  m.at(0, 0) = side.x;
2279  m.at(1, 0) = side.y;
2280  m.at(2, 0) = side.z;
2281 
2282  m.at(0, 1) = up.x;
2283  m.at(1, 1) = up.y;
2284  m.at(2, 1) = up.z;
2285 
2286  m.at(0, 2) = -forward.x;
2287  m.at(1, 2) = -forward.y;
2288  m.at(2, 2) = -forward.z;
2289 
2290  m = m * Matrix4<T>::createTranslation(-eyePos.x, -eyePos.y, -eyePos.z);
2291  return m;
2292  }
2293 
2294 
2307  static Matrix4<T> createFrustum(T left, T right, T bottom, T top, T zNear, T zFar)
2308  {
2309  /*
2310  *
2311  2 zNear
2312  ------------ 0 A 0
2313  right - left
2314 
2315  2 zNear
2316  0 ------------ B 0
2317  top - bottom
2318 
2319  0 0 C D
2320 
2321  0 0 -1 0
2322 
2323  A = (right + left) / (right - left)
2324 
2325  B = (top + bottom) / (top - bottom)
2326 
2327  C = - (zFar + zNear) / (zFar - zNear)
2328 
2329  D = - (2 zFar zNear) / (zFar - zNear)
2330  *
2331  */
2332  Matrix4<T> ret;
2333 
2334  const T invWidth = 1.0 / (right - left);
2335  const T invHeight = 1.0 / (top - bottom);
2336  const T invDepth = 1.0 / (zFar - zNear);
2337 
2338  const T twoZNear = 2 * zNear;
2339 
2340  ret.at(0,0) = twoZNear * invWidth;
2341  ret.at(1,1) = twoZNear * invHeight;
2342 
2343  ret.at(2,0) = (right + left) * invWidth;
2344  ret.at(2,1) = (top + bottom) * invHeight;
2345  ret.at(2,2) = - (zFar + zNear) * invDepth;
2346  ret.at(2,3) = -1;
2347 
2348  ret.at(3,2) = - twoZNear * zFar * invDepth;
2349  ret.at(3,3) = 0;
2350 
2351  return ret;
2352  }
2353 
2366  static Matrix4<T> createOrtho(T left, T right, T bottom, T top, T zNear, T zFar)
2367  {
2368  /*
2369  2
2370  ------------ 0 0 tx
2371  right - left
2372 
2373  2
2374  0 ------------ 0 ty
2375  top - bottom
2376 
2377  -2
2378  0 0 ------------ tz
2379  zFar-zNear
2380 
2381  0 0 0 1
2382 
2383  where
2384 
2385  tx = - (right + left) / (right - left)
2386 
2387  ty = - (top + bottom) / (top - bottom)
2388 
2389  tz = - (zFar + zNear) / (zFar - zNear)
2390 
2391  */
2392 
2393  const T invWidth = 1.0 / (right - left);
2394  const T invHeight = 1.0 / (top - bottom);
2395  const T invDepth = 1.0 / (zFar - zNear);
2396 
2397  Matrix4<T> ret;
2398 
2399  ret.at(0,0) = 2 * invWidth;
2400  ret.at(1,1) = 2 * invHeight;
2401  ret.at(2,2) = -2 * invDepth;
2402 
2403  ret.at(3,0) = -(right + left) * invWidth;
2404  ret.at(3,1) = -(top + bottom) * invHeight;
2405  ret.at(3,2) = -(zFar + zNear) * invDepth;
2406 
2407  return ret;
2408  }
2409 
2416  template<class FromT>
2417  static Matrix4<T> fromRowMajorArray(const FromT* arr)
2418  {
2419  const T retData[] =
2420  { static_cast<T>(arr[0]), static_cast<T>(arr[4]), static_cast<T>(arr[8]), static_cast<T>(arr[12]),
2421  static_cast<T>(arr[1]), static_cast<T>(arr[5]), static_cast<T>(arr[9]), static_cast<T>(arr[13]),
2422  static_cast<T>(arr[2]), static_cast<T>(arr[6]), static_cast<T>(arr[10]), static_cast<T>(arr[14]),
2423  static_cast<T>(arr[3]), static_cast<T>(arr[7]), static_cast<T>(arr[11]), static_cast<T>(arr[15]) };
2424 
2425  return retData;
2426  }
2427 
2434  template<class FromT>
2435  static Matrix4<T> fromColumnMajorArray(const FromT* arr)
2436  {
2437  const T retData[] =
2438  { static_cast<T>(arr[0]), static_cast<T>(arr[1]), static_cast<T>(arr[2]), static_cast<T>(arr[3]),
2439  static_cast<T>(arr[4]), static_cast<T>(arr[5]), static_cast<T>(arr[6]), static_cast<T>(arr[7]),
2440  static_cast<T>(arr[8]), static_cast<T>(arr[9]), static_cast<T>(arr[10]), static_cast<T>(arr[11]),
2441  static_cast<T>(arr[12]), static_cast<T>(arr[13]), static_cast<T>(arr[14]), static_cast<T>(arr[15]) };
2442 
2443  return retData;
2444  }
2445 
2446  //---------------------[ Equality operators ]------------------------------
2455  bool operator==(const Matrix4<T>& rhs) const
2456  {
2457  for (int i = 0; i < 16; i++)
2458  {
2459  if (std::fabs(data[i] - rhs.data[i]) >= EPSILON
2460  )
2461  return false;
2462  }
2463  return true;
2464  }
2465 
2471  bool operator!=(const Matrix4<T>& rhs) const
2472  {
2473  return !(*this == rhs);
2474  }
2475 
2476  //---------------------[ access operators ]---------------------------------
2482  T& at(int x, int y)
2483  {
2484  assert(x >= 0 && x < 4);
2485  assert(y >= 0 && y < 4);
2486  return data[x * 4 + y];
2487  }
2488 
2494  const T& at(int x, int y) const
2495  {
2496  assert(x >= 0 && x < 4);
2497  assert(y >= 0 && y < 4);
2498  return data[x * 4 + y];
2499  }
2500 
2506  T& operator()(int i, int j)
2507  {
2508  assert(i >= 1 && i <= 4);
2509  assert(j >= 1 && j <= 4);
2510  return data[(j - 1) * 4 + i - 1];
2511  }
2512 
2518  const T& operator()(int i, int j) const
2519  {
2520  assert(i >= 1 && i <= 4);
2521  assert(j >= 1 && j <= 4);
2522  return data[(j - 1) * 4 + i - 1];
2523  }
2524 
2531  {
2532  at(3, 0) = v.x;
2533  at(3, 1) = v.y;
2534  at(3, 2) = v.z;
2535  at(3, 3) = 1;
2536  }
2537 
2539  {
2540  return Vector3<T>(at(3, 0), at(3, 1), at(3, 2));
2541  }
2542 
2548  void setRotation(const Matrix3<T>& m)
2549  {
2550  for (int i = 0; i < 3; i++)
2551  {
2552  for (int j = 0; j < 3; j++)
2553  {
2554  at(i, j) = m.at(i, j);
2555  }
2556  }
2557  }
2558 
2564  { return Vector3<T>(at(0,0), at(1,1), at(2,2)); }
2565 
2570  void setScale(T s)
2571  {
2572  at(0,0) = at(1,1) = at(2,2) = s;
2573  }
2574 
2581  void setScale(T sx, T sy, T sz)
2582  {
2583  at(0,0) = sx;
2584  at(1,1) = sy;
2585  at(2,2) = sz;
2586  }
2587 
2592  void setScale(const Vector3<T>& s)
2593  {
2594  at(0,0) = s.x;
2595  at(1,1) = s.y;
2596  at(2,2) = s.z;
2597  }
2598 
2604  {
2605  std::memcpy(data, rhs.data, sizeof(T) * 16);
2606  return *this;
2607  }
2608 
2613  template<class FromT>
2615  {
2616  for (int i = 0; i < 16; i++)
2617  {
2618  data[i] = static_cast<T>(rhs.data[i]);
2619  }
2620  return *this;
2621  }
2622 
2627  Matrix4<T>& operator=(const T* rhs)
2628  {
2629  std::memcpy(data, rhs, sizeof(T) * 16);
2630  return *this;
2631  }
2632 
2633  /*Matrix4<T> & operator=(const double* m)
2634  {
2635  for (int i = 0; i < 16; i++) data[i] = (T)m[i];
2636  return * this;
2637  }*/
2638 
2639  //--------------------[ matrix with matrix operations ]---------------------
2644  Matrix4<T> operator+(const Matrix4<T>& rhs) const
2645  {
2646  Matrix4<T> ret;
2647  for (int i = 0; i < 16; i++)
2648  ret.data[i] = data[i] + rhs.data[i];
2649  return ret;
2650  }
2651 
2656  Matrix4<T> operator-(const Matrix4<T>& rhs) const
2657  {
2658  Matrix4<T> ret;
2659  for (int i = 0; i < 16; i++)
2660  ret.data[i] = data[i] - rhs.data[i];
2661  return ret;
2662  }
2663 
2664  //--------------------[ matrix with scalar operations ]---------------------
2669  Matrix4<T> operator+(T rhs) const
2670  {
2671  Matrix4<T> ret;
2672  for (int i = 0; i < 16; i++)
2673  ret.data[i] = data[i] + rhs;
2674  return ret;
2675  }
2676 
2681  Matrix4<T> operator-(T rhs) const
2682  {
2683  Matrix4<T> ret;
2684  for (int i = 0; i < 16; i++)
2685  ret.data[i] = data[i] - rhs;
2686  return ret;
2687  }
2688 
2693  Matrix4<T> operator*(T rhs) const
2694  {
2695  Matrix4<T> ret;
2696  for (int i = 0; i < 16; i++)
2697  ret.data[i] = data[i] * rhs;
2698  return ret;
2699  }
2700 
2705  Matrix4<T> operator/(T rhs) const
2706  {
2707  Matrix4<T> ret;
2708  for (int i = 0; i < 16; i++)
2709  ret.data[i] = data[i] / rhs;
2710  return ret;
2711  }
2712 
2713  //--------------------[ multiply operators ]--------------------------------
2718  Vector4<T> operator*(const Vector4<T>& rhs) const
2719  {
2720  return Vector4<T>(data[0] * rhs.x + data[4] * rhs.y + data[8] * rhs.z + data[12] * rhs.w,
2721  data[1] * rhs.x + data[5] * rhs.y + data[9] * rhs.z + data[13] * rhs.w,
2722  data[2] * rhs.x + data[6] * rhs.y + data[10] * rhs.z + data[14] * rhs.w,
2723  data[3] * rhs.x + data[7] * rhs.y + data[11] * rhs.z + data[15] * rhs.w);
2724 
2725  }
2726 
2731  Vector3<T> operator*(const Vector3<T>& rhs) const
2732  {
2733  return Vector3<T>(data[0] * rhs.x + data[4] * rhs.y + data[8] * rhs.z,
2734  data[1] * rhs.x + data[5] * rhs.y + data[9] * rhs.z,
2735  data[2] * rhs.x + data[6] * rhs.y + data[10] * rhs.z);
2736  }
2737 
2743  {
2744  Matrix4<T> w;
2745  for (int i = 0; i < 4; i++)
2746  {
2747  for (int j = 0; j < 4; j++)
2748  {
2749  T n = 0;
2750  for (int k = 0; k < 4; k++)
2751  n += rhs.at(i, k) * at(k, j);
2752  w.at(i, j) = n;
2753  }
2754  }
2755  return w;
2756 
2757  }
2758 
2759  //---------------------------[ misc operations ]----------------------------
2760 
2766  T det()
2767  {
2768 
2769  return +at(3, 0) * at(2, 1) * at(1, 2) * at(0, 3) - at(2, 0) * at(3, 1) * at(1, 2) * at(0, 3)
2770  - at(3, 0) * at(1, 1) * at(2, 2) * at(0, 3) + at(1, 0) * at(3, 1) * at(2, 2) * at(0, 3)
2771 
2772  + at(2, 0) * at(1, 1) * at(3, 2) * at(0, 3) - at(1, 0) * at(2, 1) * at(3, 2) * at(0, 3)
2773  - at(3, 0) * at(2, 1) * at(0, 2) * at(1, 3) + at(2, 0) * at(3, 1) * at(0, 2) * at(1, 3)
2774 
2775  + at(3, 0) * at(0, 1) * at(2, 2) * at(1, 3) - at(0, 0) * at(3, 1) * at(2, 2) * at(1, 3)
2776  - at(2, 0) * at(0, 1) * at(3, 2) * at(1, 3) + at(0, 0) * at(2, 1) * at(3, 2) * at(1, 3)
2777 
2778  + at(3, 0) * at(1, 1) * at(0, 2) * at(2, 3) - at(1, 0) * at(3, 1) * at(0, 2) * at(2, 3)
2779  - at(3, 0) * at(0, 1) * at(1, 2) * at(2, 3) + at(0, 0) * at(3, 1) * at(1, 2) * at(2, 3)
2780 
2781  + at(1, 0) * at(0, 1) * at(3, 2) * at(2, 3) - at(0, 0) * at(1, 1) * at(3, 2) * at(2, 3)
2782  - at(2, 0) * at(1, 1) * at(0, 2) * at(3, 3) + at(1, 0) * at(2, 1) * at(0, 2) * at(3, 3)
2783 
2784  + at(2, 0) * at(0, 1) * at(1, 2) * at(3, 3) - at(0, 0) * at(2, 1) * at(1, 2) * at(3, 3)
2785  - at(1, 0) * at(0, 1) * at(2, 2) * at(3, 3) + at(0, 0) * at(1, 1) * at(2, 2) * at(3, 3);
2786 
2787  }
2788 
2796  {
2797  Matrix4<T> ret;
2798 
2799  ret.at(0, 0) = +at(2, 1) * at(3, 2) * at(1, 3) - at(3, 1) * at(2, 2) * at(1, 3) + at(3, 1) * at(1, 2) * at(2, 3)
2800  - at(1, 1) * at(3, 2) * at(2, 3) - at(2, 1) * at(1, 2) * at(3, 3) + at(1, 1) * at(2, 2) * at(3, 3);
2801 
2802  ret.at(1, 0) = +at(3, 0) * at(2, 2) * at(1, 3) - at(2, 0) * at(3, 2) * at(1, 3) - at(3, 0) * at(1, 2) * at(2, 3)
2803  + at(1, 0) * at(3, 2) * at(2, 3) + at(2, 0) * at(1, 2) * at(3, 3) - at(1, 0) * at(2, 2) * at(3, 3);
2804 
2805  ret.at(2, 0) = +at(2, 0) * at(3, 1) * at(1, 3) - at(3, 0) * at(2, 1) * at(1, 3) + at(3, 0) * at(1, 1) * at(2, 3)
2806  - at(1, 0) * at(3, 1) * at(2, 3) - at(2, 0) * at(1, 1) * at(3, 3) + at(1, 0) * at(2, 1) * at(3, 3);
2807 
2808  ret.at(3, 0) = +at(3, 0) * at(2, 1) * at(1, 2) - at(2, 0) * at(3, 1) * at(1, 2) - at(3, 0) * at(1, 1) * at(2, 2)
2809  + at(1, 0) * at(3, 1) * at(2, 2) + at(2, 0) * at(1, 1) * at(3, 2) - at(1, 0) * at(2, 1) * at(3, 2);
2810 
2811  ret.at(0, 1) = +at(3, 1) * at(2, 2) * at(0, 3) - at(2, 1) * at(3, 2) * at(0, 3) - at(3, 1) * at(0, 2) * at(2, 3)
2812  + at(0, 1) * at(3, 2) * at(2, 3) + at(2, 1) * at(0, 2) * at(3, 3) - at(0, 1) * at(2, 2) * at(3, 3);
2813 
2814  ret.at(1, 1) = +at(2, 0) * at(3, 2) * at(0, 3) - at(3, 0) * at(2, 2) * at(0, 3) + at(3, 0) * at(0, 2) * at(2, 3)
2815  - at(0, 0) * at(3, 2) * at(2, 3) - at(2, 0) * at(0, 2) * at(3, 3) + at(0, 0) * at(2, 2) * at(3, 3);
2816 
2817  ret.at(2, 1) = +at(3, 0) * at(2, 1) * at(0, 3) - at(2, 0) * at(3, 1) * at(0, 3) - at(3, 0) * at(0, 1) * at(2, 3)
2818  + at(0, 0) * at(3, 1) * at(2, 3) + at(2, 0) * at(0, 1) * at(3, 3) - at(0, 0) * at(2, 1) * at(3, 3);
2819 
2820  ret.at(3, 1) = +at(2, 0) * at(3, 1) * at(0, 2) - at(3, 0) * at(2, 1) * at(0, 2) + at(3, 0) * at(0, 1) * at(2, 2)
2821  - at(0, 0) * at(3, 1) * at(2, 2) - at(2, 0) * at(0, 1) * at(3, 2) + at(0, 0) * at(2, 1) * at(3, 2);
2822 
2823  ret.at(0, 2) = +at(1, 1) * at(3, 2) * at(0, 3) - at(3, 1) * at(1, 2) * at(0, 3) + at(3, 1) * at(0, 2) * at(1, 3)
2824  - at(0, 1) * at(3, 2) * at(1, 3) - at(1, 1) * at(0, 2) * at(3, 3) + at(0, 1) * at(1, 2) * at(3, 3);
2825 
2826  ret.at(1, 2) = +at(3, 0) * at(1, 2) * at(0, 3) - at(1, 0) * at(3, 2) * at(0, 3) - at(3, 0) * at(0, 2) * at(1, 3)
2827  + at(0, 0) * at(3, 2) * at(1, 3) + at(1, 0) * at(0, 2) * at(3, 3) - at(0, 0) * at(1, 2) * at(3, 3);
2828 
2829  ret.at(2, 2) = +at(1, 0) * at(3, 1) * at(0, 3) - at(3, 0) * at(1, 1) * at(0, 3) + at(3, 0) * at(0, 1) * at(1, 3)
2830  - at(0, 0) * at(3, 1) * at(1, 3) - at(1, 0) * at(0, 1) * at(3, 3) + at(0, 0) * at(1, 1) * at(3, 3);
2831 
2832  ret.at(3, 2) = +at(3, 0) * at(1, 1) * at(0, 2) - at(1, 0) * at(3, 1) * at(0, 2) - at(3, 0) * at(0, 1) * at(1, 2)
2833  + at(0, 0) * at(3, 1) * at(1, 2) + at(1, 0) * at(0, 1) * at(3, 2) - at(0, 0) * at(1, 1) * at(3, 2);
2834 
2835  ret.at(0, 3) = +at(2, 1) * at(1, 2) * at(0, 3) - at(1, 1) * at(2, 2) * at(0, 3) - at(2, 1) * at(0, 2) * at(1, 3)
2836  + at(0, 1) * at(2, 2) * at(1, 3) + at(1, 1) * at(0, 2) * at(2, 3) - at(0, 1) * at(1, 2) * at(2, 3);
2837 
2838  ret.at(1, 3) = +at(1, 0) * at(2, 2) * at(0, 3) - at(2, 0) * at(1, 2) * at(0, 3) + at(2, 0) * at(0, 2) * at(1, 3)
2839  - at(0, 0) * at(2, 2) * at(1, 3) - at(1, 0) * at(0, 2) * at(2, 3) + at(0, 0) * at(1, 2) * at(2, 3);
2840 
2841  ret.at(2, 3) = +at(2, 0) * at(1, 1) * at(0, 3) - at(1, 0) * at(2, 1) * at(0, 3) - at(2, 0) * at(0, 1) * at(1, 3)
2842  + at(0, 0) * at(2, 1) * at(1, 3) + at(1, 0) * at(0, 1) * at(2, 3) - at(0, 0) * at(1, 1) * at(2, 3);
2843 
2844  ret.at(3, 3) = +at(1, 0) * at(2, 1) * at(0, 2) - at(2, 0) * at(1, 1) * at(0, 2) + at(2, 0) * at(0, 1) * at(1, 2)
2845  - at(0, 0) * at(2, 1) * at(1, 2) - at(1, 0) * at(0, 1) * at(2, 2) + at(0, 0) * at(1, 1) * at(2, 2);
2846 
2847  return ret / det();
2848  }
2849 
2854  {
2855  Matrix4<T> ret;
2856  for (int i = 0; i < 4; i++)
2857  {
2858  for (int j = 0; j < 4; j++)
2859  {
2860  ret.at(i, j) = at(j, i);
2861  }
2862  }
2863  return ret;
2864  }
2865 
2875  Matrix4<T> lerp(T fact, const Matrix4<T>& rhs) const
2876  {
2877  Matrix4<T> ret = (*this) + (rhs - (*this)) * fact;
2878  return ret;
2879  }
2880 
2881  //-------------[ conversion ]-----------------------------
2887  operator T*()
2888  {
2889  return (T*) data;
2890  }
2891 
2897  operator const T*() const
2898  {
2899  return (const T*) data;
2900  }
2901 
2902  //----------[ output operator ]----------------------------
2909  friend std::ostream& operator <<(std::ostream& lhs, const Matrix4<T>& rhs)
2910  {
2911  for (int i = 0; i < 4; i++)
2912  {
2913  lhs << "|\t";
2914  for (int j = 0; j < 4; j++)
2915  {
2916  lhs << rhs.at(j, i) << "\t";
2917  }
2918  lhs << "|" << std::endl;
2919  }
2920  return lhs;
2921  }
2922 
2926  std::string toString() const
2927  {
2928  std::ostringstream oss;
2929  oss << *this;
2930  return oss.str();
2931  }
2932 
2933 };
2934 
2941 
2949 template<class T>
2951 {
2952 public:
2956  T w;
2961 
2966  : w(0), v(0, 0, 0)
2967  {
2968  }
2969 
2974  : w(q.w), v(q.v)
2975  {
2976  }
2977 
2981  template<class FromT>
2983  : w(static_cast<T>(q.w)), v(q.v)
2984  {
2985  }
2986 
2992  Quaternion(T w_, const Vector3<T>& v_)
2993  : w(w_), v(v_)
2994  {
2995  }
2996 
3004  Quaternion(T w_, T x, T y, T z)
3005  : w(w_), v(x, y, z)
3006  {
3007  }
3008 
3014  {
3015  v = rhs.v;
3016  w = rhs.w;
3017  return *this;
3018  }
3019 
3024  template<class FromT>
3026  {
3027  v = rhs.v;
3028  w = static_cast<T>(rhs.w);
3029  return *this;
3030  }
3031 
3037  {
3038  const Quaternion<T>& lhs = *this;
3039  return Quaternion<T>(lhs.w + rhs.w, lhs.v + rhs.v);
3040  }
3041 
3047  {
3048  const Quaternion<T>& lhs = *this;
3049  return Quaternion<T>(lhs.w * rhs.w - lhs.v.x * rhs.v.x - lhs.v.y * rhs.v.y - lhs.v.z * rhs.v.z,
3050  lhs.w * rhs.v.x + lhs.v.x * rhs.w + lhs.v.y * rhs.v.z - lhs.v.z * rhs.v.y,
3051  lhs.w * rhs.v.y - lhs.v.x * rhs.v.z + lhs.v.y * rhs.w + lhs.v.z * rhs.v.x,
3052  lhs.w * rhs.v.z + lhs.v.x * rhs.v.y - lhs.v.y * rhs.v.x + lhs.v.z * rhs.w);
3053  }
3054 
3060  {
3061  return Quaternion<T>(w * rhs, v * rhs);
3062  }
3063 
3069  {
3070  const Quaternion<T>& lhs = *this;
3071  return Quaternion<T>(lhs.w - rhs.w, lhs.v - rhs.v);
3072  }
3073 
3079  {
3080  w += rhs.w;
3081  v += rhs.v;
3082  return *this;
3083  }
3084 
3090  {
3091  w -= rhs.w;
3092  v -= rhs.v;
3093  return *this;
3094  }
3095 
3101  {
3102  Quaternion q = (*this) * rhs;
3103  v = q.v;
3104  w = q.w;
3105  return *this;
3106  }
3107 
3113  {
3114  w *= rhs;
3115  v *= rhs;
3116  return *this;
3117  }
3118 
3126  bool operator==(const Quaternion<T>& rhs) const
3127  {
3128  const Quaternion<T>& lhs = *this;
3129  return (std::fabs(lhs.w - rhs.w) < EPSILON) && lhs.v == rhs.v;
3130  }
3131 
3137  bool operator!=(const Quaternion<T>& rhs) const
3138  {
3139  return !(*this == rhs);
3140  }
3141 
3142  //-------------[ unary operations ]--------------------------
3148  {
3149  return Quaternion<T>(-w, -v);
3150  }
3151 
3157  {
3158  return Quaternion<T>(w, -v);
3159  }
3160 
3165  T length() const
3166  {
3167  return (T) std::sqrt(w * w + v.lengthSq());
3168  }
3169 
3177  T lengthSq() const
3178  {
3179  return w * w + v.lengthSq();
3180  }
3181 
3185  void normalize()
3186  {
3187  T len = length();
3188  w /= len;
3189  v /= len;
3190  }
3191 
3199  static Quaternion<T> fromEulerAngles(T x, T y, T z)
3200  {
3201  Quaternion<T> ret = fromAxisRot(Vector3<T>(1, 0, 0), x) * fromAxisRot(Vector3<T>(0, 1, 0), y)
3202  * fromAxisRot(Vector3<T>(0, 0, 1), z);
3203  return ret;
3204  }
3205 
3211  static Quaternion<T> fromAxisRot(Vector3<T> axis, float angleDeg)
3212  {
3213  double angleRad = DEG2RAD(angleDeg);
3214  double sa2 = std::sin(angleRad / 2);
3215  double ca2 = std::cos(angleRad / 2);
3216  return Quaternion<T>(ca2, axis * sa2);
3217  }
3218 
3224  {
3225  Matrix3<T> ret;
3226 
3227  /*ret.at(0,0) = 1 - 2*v.y*v.y - 2*v.z*v.z;
3228  ret.at(1,0) = 2*v.x*v.y - 2*w*v.z;
3229  ret.at(2,0) = 2*v.x*v.z - 2*w*v.y;
3230 
3231  ret.at(0,1) = 2*v.x*v.y + 2*w*v.z;
3232  ret.at(1,1) = 1 - 2*v.x*v.x - 2*v.z*v.z;
3233  ret.at(2,1) = 2*v.y*v.z - 2*w*v.x;
3234 
3235  ret.at(0,2) = 2*v.x*v.z - 2*w*v.y;
3236  ret.at(1,2) = 2*v.y*v.z + 2*w*v.x;
3237  ret.at(2,2) = 1 - 2*v.x*v.x - 2*v.y*v.y;*/
3238 
3239  T xx = v.x * v.x;
3240  T xy = v.x * v.y;
3241  T xz = v.x * v.z;
3242  T xw = v.x * w;
3243 
3244  T yy = v.y * v.y;
3245  T yz = v.y * v.z;
3246  T yw = v.y * w;
3247 
3248  T zz = v.z * v.z;
3249  T zw = v.z * w;
3250 
3251  ret.at(0, 0) = 1 - 2 * (yy + zz);
3252  ret.at(1, 0) = 2 * (xy - zw);
3253  ret.at(2, 0) = 2 * (xz + yw);
3254 
3255  ret.at(0, 1) = 2 * (xy + zw);
3256  ret.at(1, 1) = 1 - 2 * (xx + zz);
3257  ret.at(2, 1) = 2 * (yz - xw);
3258 
3259  ret.at(0, 2) = 2 * (xz - yw);
3260  ret.at(1, 2) = 2 * (yz + xw);
3261  ret.at(2, 2) = 1 - 2 * (xx + yy);
3262 
3263  return ret;
3264  }
3265 
3273  {
3274  Matrix4<T> ret;
3275 
3276  T xx = v.x * v.x;
3277  T xy = v.x * v.y;
3278  T xz = v.x * v.z;
3279  T xw = v.x * w;
3280 
3281  T yy = v.y * v.y;
3282  T yz = v.y * v.z;
3283  T yw = v.y * w;
3284 
3285  T zz = v.z * v.z;
3286  T zw = v.z * w;
3287 
3288  ret.at(0, 0) = 1 - 2 * (yy + zz);
3289  ret.at(1, 0) = 2 * (xy - zw);
3290  ret.at(2, 0) = 2 * (xz + yw);
3291  ret.at(3, 0) = 0;
3292 
3293  ret.at(0, 1) = 2 * (xy + zw);
3294  ret.at(1, 1) = 1 - 2 * (xx + zz);
3295  ret.at(2, 1) = 2 * (yz - xw);
3296  ret.at(3, 1) = 0;
3297 
3298  ret.at(0, 2) = 2 * (xz - yw);
3299  ret.at(1, 2) = 2 * (yz + xw);
3300  ret.at(2, 2) = 1 - 2 * (xx + yy);
3301  ret.at(3, 2) = 0;
3302 
3303  ret.at(0, 3) = 0;
3304  ret.at(1, 3) = 0;
3305  ret.at(2, 3) = 0;
3306  ret.at(3, 3) = 1;
3307 
3308  return ret;
3309 
3310  }
3311 
3321  Quaternion<T> lerp(T fact, const Quaternion<T>& rhs) const
3322  {
3323  return Quaternion<T>((1 - fact) * w + fact * rhs.w, v.lerp(fact, rhs.v));
3324  }
3325 
3329  friend std::ostream& operator <<(std::ostream& oss, const Quaternion<T>& q)
3330  {
3331  oss << "Re: " << q.w << " Im: " << q.v;
3332  return oss;
3333  }
3334 
3338  std::string toString() const
3339  {
3340  std::ostringstream oss;
3341  oss << *this;
3342  return oss.str();
3343  }
3344 
3351  // 2011-07-02: Davide Bacchet: changed formula to fix degenerate cases
3353  {
3354  Quaternion<T> q;
3355 
3356  T tr, s;
3357  tr = m(1, 1) + m(2, 2) + m(3, 3);
3358  if (tr >= epsilon)
3359  {
3360  s = 0.5 / (T) sqrt(tr + 1.0);
3361  q.w = 0.25 / s;
3362  q.v.x = (m(3, 2) - m(2, 3)) * s;
3363  q.v.y = (m(1, 3) - m(3, 1)) * s;
3364  q.v.z = (m(2, 1) - m(1, 2)) * s;
3365  }
3366  else
3367  {
3368  T d0 = m(1, 1);
3369  T d1 = m(2, 2);
3370  T d2 = m(3, 3);
3371 
3372  char bigIdx = (d0 > d1) ? ((d0 > d2) ? 0 : 2):((d1 > d2) ? 1 : 2);
3373 
3374  if (bigIdx == 0)
3375  {
3376  s = 2.0 * (T) sqrt(1.0 + m(1, 1) - m(2, 2) - m(3, 3));
3377  q.w = (m(3, 2) - m(2, 3)) / s;
3378  q.v.x = 0.25 * s;
3379  q.v.y = (m(1, 2) + m(2, 1)) / s;
3380  q.v.z = (m(1, 3) + m(3, 1)) / s;
3381  }
3382  else if (bigIdx == 1)
3383  {
3384  s = 2.0 * (T) sqrt(1.0 + m(2, 2) - m(1, 1) - m(3, 3));
3385  q.w = (m(1, 3) - m(3, 1)) / s;
3386  q.v.x = (m(1, 2) + m(2, 1)) / s;
3387  q.v.y = 0.25 * s;
3388  q.v.z = (m(2, 3) + m(3, 2)) / s;
3389  }
3390  else
3391  {
3392  s = 2.0 * (T) sqrt(1.0 + m(3, 3) - m(1, 1) - m(2, 2));
3393  q.w = (m(2, 1) - m(1, 2)) / s;
3394  q.v.x = (m(1, 3) + m(3, 1)) / s;
3395  q.v.y = (m(2, 3) + m(3, 2)) / s;
3396  q.v.z = 0.25 * s;
3397  }
3398  }
3399 
3400  return q;
3401  }
3402 
3410  // 2011-07-02: Davide Bacchet: changed formula to fix degenerate cases
3412  {
3413  Quaternion<T> q;
3414 
3415  T tr, s;
3416  tr = m(1, 1) + m(2, 2) + m(3, 3);
3417  if (tr >= epsilon)
3418  {
3419  s = 0.5 / (T) sqrt(tr + 1.0);
3420  q.w = 0.25 / s;
3421  q.v.x = (m(3, 2) - m(2, 3)) * s;
3422  q.v.y = (m(1, 3) - m(3, 1)) * s;
3423  q.v.z = (m(2, 1) - m(1, 2)) * s;
3424  }
3425  else
3426  {
3427  T d0 = m(1, 1);
3428  T d1 = m(2, 2);
3429  T d2 = m(3, 3);
3430 
3431  char bigIdx = (d0 > d1) ? ((d0 > d2) ? 0 : 2):((d1 > d2) ? 1 : 2);
3432 
3433  if (bigIdx == 0)
3434  {
3435  s = 2.0 * (T) sqrt(1.0 + m(1, 1) - m(2, 2) - m(3, 3));
3436  q.w = (m(3, 2) - m(2, 3)) / s;
3437  q.v.x = 0.25 * s;
3438  q.v.y = (m(1, 2) + m(2, 1)) / s;
3439  q.v.z = (m(1, 3) + m(3, 1)) / s;
3440  }
3441  else if (bigIdx == 1)
3442  {
3443  s = 2.0 * (T) sqrt(1.0 + m(2, 2) - m(1, 1) - m(3, 3));
3444  q.w = (m(1, 3) - m(3, 1)) / s;
3445  q.v.x = (m(1, 2) + m(2, 1)) / s;
3446  q.v.y = 0.25 * s;
3447  q.v.z = (m(2, 3) + m(3, 2)) / s;
3448  }
3449  else
3450  {
3451  s = 2.0 * (T) sqrt(1.0 + m(3, 3) - m(1, 1) - m(2, 2));
3452  q.w = (m(2, 1) - m(1, 2)) / s;
3453  q.v.x = (m(1, 3) + m(3, 1)) / s;
3454  q.v.y = (m(2, 3) + m(3, 2)) / s;
3455  q.v.z = 0.25 * s;
3456  }
3457  }
3458 
3459  return q;
3460  }
3461 
3470  Quaternion<T> slerp(T r, const Quaternion<T>& q2) const
3471  {
3472  Quaternion<T> ret;
3473  T cosTheta = w * q2.w + v.x * q2.v.x + v.y * q2.v.y + v.z * q2.v.z;
3474  T theta = (T) acos(cosTheta);
3475  if (fabs(theta) < epsilon)
3476  {
3477  ret = *this;
3478  }
3479  else
3480  {
3481  T sinTheta = (T) sqrt(1.0 - cosTheta * cosTheta);
3482  if (fabs(sinTheta) < epsilon)
3483  {
3484  ret.w = 0.5 * w + 0.5 * q2.w;
3485  ret.v = v.lerp(0.5, q2.v);
3486  }
3487  else
3488  {
3489  T rA = (T) sin((1.0 - r) * theta) / sinTheta;
3490  T rB = (T) sin(r * theta) / sinTheta;
3491 
3492  ret.w = w * rA + q2.w * rB;
3493  ret.v.x = v.x * rA + q2.v.x * rB;
3494  ret.v.y = v.y * rA + q2.v.y * rB;
3495  ret.v.z = v.z * rA + q2.v.z * rB;
3496  }
3497  }
3498  return ret;
3499  }
3500 
3501 };
3502 
3505 
3506 #ifdef VMATH_NAMESPACE
3507 }
3508 #endif
3509 
3510 
3511 
3513 //
3514 // Standard C++ library extensions
3515 //
3517 
3518 
3519 // Shortcut defines
3520 #ifdef VMATH_NAMESPACE
3521 #define VEC2 VMATH_NAMESPACE::Vector2
3522 #define VEC3 VMATH_NAMESPACE::Vector3
3523 #define VEC4 VMATH_NAMESPACE::Vector4
3524 #else
3525 #define VEC2 Vector2
3526 #define VEC3 Vector3
3527 #define VEC4 Vector4
3528 #endif
3529 
3530 namespace std
3531 {
3532 
3537  template <typename T>
3538  VEC2<T> min(const VEC2<T>& a, const VEC2<T>& b)
3539  {
3540  return VEC2<T>(::std::min(a.x, b.x), ::std::min(a.y, b.y));
3541  }
3542 
3547  template <typename T>
3548  VEC3<T> min(const VEC3<T>& a, const VEC3<T>& b)
3549  {
3550  return VEC3<T>(::std::min(a.x, b.x), ::std::min(a.y, b.y), ::std::min(a.z, b.z));
3551  }
3552 
3557  template <typename T>
3558  VEC4<T> min(const VEC4<T>& a, const VEC4<T>& b)
3559  {
3560  return VEC4<T>(::std::min(a.x, b.x), ::std::min(a.y, b.y), ::std::min(a.z, b.z), ::std::min(a.w, b.w));
3561  }
3562 
3567  template <typename T>
3568  VEC2<T> max(const VEC2<T>& a, const VEC2<T>& b)
3569  {
3570  return VEC2<T>(::std::max(a.x, b.x), ::std::max(a.y, b.y));
3571  }
3572 
3577  template <typename T>
3578  VEC3<T> max(const VEC3<T>& a, const VEC3<T>& b)
3579  {
3580  return VEC3<T>(::std::max(a.x, b.x), ::std::max(a.y, b.y), ::std::max(a.z, b.z));
3581  }
3582 
3587  template <typename T>
3588  VEC4<T> max(const VEC4<T>& a, const VEC4<T>& b)
3589  {
3590  return VEC4<T>(::std::max(a.x, b.x), ::std::max(a.y, b.y), ::std::max(a.z, b.z), ::std::max(a.w, b.w));
3591  }
3592 }
3593 
3594 // cleanup shortcut defines
3595 #undef VEC2
3596 #undef VEC3
3597 #undef VEC4
3598 
3599 #ifdef VMATH_NAMESPACE
3600 namespace VMATH_NAMESPACE
3601 {
3602 #endif //VMATH_NAMESPACE
3603 
3620  template <typename T>
3621  class Aabb3
3622  {
3623  public:
3628 
3633 
3639  : min(1,1,1), max(-1,-1,-1)
3640  {}
3641 
3646  template <typename SrcT>
3647  Aabb3(const Vector3<SrcT>& point)
3648  : min(point), max(point)
3649  {}
3650 
3661  template <typename SrcT>
3662  Aabb3(SrcT x0, SrcT y0, SrcT z0, SrcT x1, SrcT y1, SrcT z1)
3663  : min(std::min(x0,x1), std::min(y0,y1), std::min(z0,z1)),
3664  max(std::max(x0,x1), std::max(y0,y1), std::max(z0,z1))
3665  {}
3666 
3673  template <typename SrcT>
3674  Aabb3(SrcT x, SrcT y, SrcT z)
3675  : min(x,y,z), max(x,y,z)
3676  {}
3677 
3682  template <typename SrcT>
3683  Aabb3(const Aabb3<SrcT>& src)
3684  : min(src.min), max(src.max)
3685  {}
3686 
3692  template <typename SrcT>
3694  {
3695  min = rhs.min;
3696  max = rhs.max;
3697  return *this;
3698  }
3699 
3700 
3707  bool valid() const
3708  { return min.x <= max.x && min.y <= max.y && min.z <= max.z; }
3709 
3714  void invalidate()
3715  { min = Vector3<T>(1,1,1); max = Vector3<T>(-1,-1,-1); }
3716 
3721  template <typename SrcT>
3722  void extend(const Vector3<SrcT>& point)
3723  {
3724  if (!valid())
3725  {
3726  min = max = point;
3727  }
3728  else
3729  {
3730  min = std::min(min, point);
3731  max = std::max(max, point);
3732  }
3733  }
3734 
3739  template <typename SrcT>
3740  void extend(const Aabb3<SrcT>& box)
3741  {
3742  if (!valid())
3743  {
3744  min = box.min;
3745  max = box.max;
3746  }
3747  else
3748  {
3749  min = std::min(min, box.min);
3750  max = std::max(max, box.max);
3751  }
3752  }
3753 
3759  template <typename SrcT>
3760  Aabb3<T> extended(const Vector3<SrcT>& point) const
3761  {
3762  Aabb3<T> ret(*this);
3763  ret.extend(point);
3764  return ret;
3765  }
3766 
3772  template <typename SrcT>
3773  Aabb3<T> extended(const Aabb3<SrcT>& box) const
3774  {
3775  Aabb3<T> ret(*this);
3776  ret.extend(box);
3777  return ret;
3778  }
3779 
3785  template <typename SrcT>
3786  bool intersects(const Vector3<SrcT>& point) const
3787  {
3788  /*
3789  for (size_t i = 0; i < 3; i++)
3790  {
3791  if (min[i] > point[i] || point[i] > max[i])
3792  return false;
3793  }
3794  */
3795  // unrolled loop above
3796  if (min.x > point.x || point.x > max.x)
3797  return false;
3798  if (min.y > point.y || point.y > max.y)
3799  return false;
3800  if (min.z > point.z || point.z > max.z)
3801  return false;
3802 
3803  return true;
3804  }
3805 
3811  template <typename SrcT>
3812  bool intersects(const Aabb3<SrcT>& box) const
3813  {
3814  /*
3815  for (size_t i = 0; i < 3; i++)
3816  {
3817  if (max[i] < box.min[i] || min[i] > box.max[i])
3818  return false;
3819  }
3820  */
3821  // unrolled loop above
3822  if (max.x < box.min.x || min.x > box.max.x)
3823  return false;
3824  if (max.y < box.min.y || min.y > box.max.y)
3825  return false;
3826  if (max.z < box.min.z || min.z > box.max.z)
3827  return false;
3828 
3829  return true;
3830  }
3831 
3839  template <typename SrcT>
3840  Aabb3<T> intersection(const Aabb3<SrcT>& other) const
3841  {
3842  Aabb3<T> ret;
3843  if (max.x < other.min.x || min.x > other.max.x)
3844  return ret;
3845  if (max.y < other.min.y || min.y > other.max.y)
3846  return ret;
3847  if (max.z < other.min.z || min.z > other.max.z)
3848  return ret;
3849 
3850  ret.min = std::max(min, other.min);
3851  ret.max = std::min(max, other.max);
3852 
3853  return ret;
3854  }
3855 
3861  { return (min + max) * 0.5f; }
3862 
3868  { return (max - min) * 0.5f; }
3869 
3875  { return max - min; }
3876 
3892  Vector3<T> point(size_t i) const
3893  {
3894  assert(i < 8);
3895  return Vector3<T>(i & 1 ? min.x : max.x, i & 2 ? min.y : max.y, i & 4 ? min.z : max.z);
3896  }
3897 
3904  {
3905  Aabb3<T> ret;
3906  for (size_t i = 0; i < 8; i++)
3907  {
3908  const Vector4<T> p(point(i), 1);
3909  ret.extend((t * p).xyz());
3910  }
3911 
3912  return ret;
3913  }
3914 
3915  //-------------------------------------------------------------------------------------------------------------
3916  // operators
3917  //-------------------------------------------------------------------------------------------------------------
3923  template <typename RhsT>
3924  bool operator==(const Aabb3<RhsT>& rhs) const
3925  {
3926  return min == rhs.min && max == rhs.max;
3927  }
3928 
3934  template <typename RhsT>
3935  bool operator!=(const Aabb3<RhsT>& rhs) const
3936  {
3937  return min != rhs.min || max != rhs.max;
3938  }
3939 
3945  Aabb3<T> operator*(const Matrix4<T>& rhs) const
3946  {
3947  return transformed(rhs);
3948  }
3949 
3956  {
3957  *this = transformed(rhs);
3958  return *this;
3959  }
3960 
3961 
3967  template <typename SrcT>
3968  Aabb3<T>& operator<<(const Vector3<SrcT>& rhs)
3969  {
3970  extend(rhs);
3971  return *this;
3972  }
3973 
3979  template <typename SrcT>
3980  Aabb3<T>& operator<<(const Aabb3<SrcT>& rhs)
3981  {
3982  extend(rhs);
3983  return *this;
3984  }
3985 
3991  template <typename RhsT>
3992  Aabb3<T> operator|(const Aabb3<RhsT>& rhs) const
3993  {
3994  return extended(rhs);
3995  }
3996 
4002  template <typename RhsT>
4003  Aabb3<T> operator&(const Aabb3<RhsT>& rhs) const
4004  {
4005  return intersection(rhs);
4006  }
4007 
4014  friend std::ostream& operator<<(std::ostream& lhs, const Aabb3<T>& rhs)
4015  {
4016  lhs << rhs.min << " x " << rhs.max;
4017  return lhs;
4018  }
4019 
4020  };
4021 
4024 
4025 #ifdef VMATH_NAMESPACE
4026 }
4027 #endif //VMATH_NAMESPACE
4028 
4029 
4030 #endif // __vmath_Header_File__
4031 
bool operator!=(const Quaternion< T > &rhs) const
Inequality test operator.
Definition: vmath.h:3137
std::string toString() const
Gets string representation.
Definition: vmath.h:558
static Quaternion< T > fromMatrix(const Matrix4< T > &m)
Creates quaternion from transform matrix.
Definition: vmath.h:3352
Vector4< T > & operator*=(const Vector4< T > &rhs)
Multiplication operator.
Definition: vmath.h:1349
Vector2< T > & operator/=(const Vector2< T > &rhs)
Division operator.
Definition: vmath.h:354
Aabb3(SrcT x, SrcT y, SrcT z)
Constructs axes-aligned bounding-box containing point (x, y, z)
Definition: vmath.h:3674
T y
Second element of vector, alias for Y-coordinate.
Definition: vmath.h:179
Aabb3< T > & operator=(const Aabb3< SrcT > &rhs)
Assign operator.
Definition: vmath.h:3693
static Matrix4< T > fromRowMajorArray(const FromT *arr)
Creates new matrix 4x4 from array that represents such matrix 4x4 as array of tightly packed elements...
Definition: vmath.h:2417
Vector4< int > Vector4i
Three dimensional Vector of ints.
Definition: vmath.h:1610
Matrix4< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:2693
Matrix3< T > operator-(const Matrix3< T > &rhs) const
Subtraction operator.
Definition: vmath.h:1900
Quaternion< T > slerp(T r, const Quaternion< T > &q2) const
Computes spherical interpolation between quaternions (this, q2) using coefficient of interpolation r ...
Definition: vmath.h:3470
Matrix3< double > Matrix3d
Matrix 3x3 of doubles.
Definition: vmath.h:2104
Aabb3< T > transformed(const Matrix4< T > &t) const
Gets transformed bounding-box by transform t.
Definition: vmath.h:3903
Vector3< T > min
Position of Min corner of bounding box.
Definition: vmath.h:3627
bool intersects(const Aabb3< SrcT > &box) const
Tests if other bounding-box box intersects (even partially) with this bouding-box.
Definition: vmath.h:3812
Matrix4(const Matrix4< T > &src)
Copy constructor.
Definition: vmath.h:2144
Matrix4< double > Matrix4d
Matrix 4x4 of doubles.
Definition: vmath.h:2938
Vector3< T > v
Imaginary part of quaternion.
Definition: vmath.h:2960
Vector4< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:1429
Vector3< T > & operator+=(T rhs)
Addition operator.
Definition: vmath.h:894
Vector3< T > & operator/=(const Vector3< T > &rhs)
Division operator.
Definition: vmath.h:827
static Matrix3< T > createRotationAroundAxis(T xDeg, T yDeg, T zDeg)
Creates rotation matrix by rotation around axis.
Definition: vmath.h:1681
T length() const
Get lenght of quaternion.
Definition: vmath.h:3165
Matrix4< T > operator-(const Matrix4< T > &rhs) const
Subtraction operator.
Definition: vmath.h:2656
T lengthSq() const
Return square of length.
Definition: vmath.h:1524
T x
First element of vector, alias for X-coordinate.
Definition: vmath.h:597
static Matrix3< T > fromColumnMajorArray(const FromT *arr)
Creates new matrix 3x3 from array that represents such matrix 3x3 as array of tightly packed elements...
Definition: vmath.h:1755
Vector3< T > operator*(const Vector3< T > &rhs) const
Multiplication operator.
Definition: vmath.h:1962
Quaternion(const Quaternion< FromT > &q)
Copy casting constructor.
Definition: vmath.h:2982
Matrix3< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:1913
Vector4< double > Vector4d
Three dimensional Vector of doubles.
Definition: vmath.h:1608
const T & operator()(int i, int j) const
Get constant reference to element at position (i,j), with math matrix notation.
Definition: vmath.h:1836
bool valid() const
Checks if bounding-box is valid.
Definition: vmath.h:3707
Matrix3< T > inverse()
Computes inverse matrix.
Definition: vmath.h:2032
bool operator==(const Matrix4< T > &rhs) const
Equality test operator.
Definition: vmath.h:2455
Vector3< T > center() const
Gets center point of bounding-box.
Definition: vmath.h:3860
bool operator==(const Vector4< T > &rhs) const
Equality test operator.
Definition: vmath.h:1379
Matrix3< T > transpose()
Transpose matrix.
Definition: vmath.h:1994
Matrix4(const T *dt)
Copy matrix values from array (these data must be in column major order!)
Definition: vmath.h:2135
T u
Third element of vector, alias for U-coordinate.
Definition: vmath.h:641
T data[16]
Data stored in column major order.
Definition: vmath.h:2119
Vector3< T > xyz() const
Gets 3D vector.
Definition: vmath.h:1571
Quaternion< double > Quatd
Definition: vmath.h:3504
std::string toString() const
Gets string representation.
Definition: vmath.h:1080
T lengthSq() const
Return square of length.
Definition: vmath.h:502
Vector4< T > operator=(const Vector4< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:1233
bool operator==(const Aabb3< RhsT > &rhs) const
Tests if rhs is equal to this bounding-box.
Definition: vmath.h:3924
Aabb3< T > operator|(const Aabb3< RhsT > &rhs) const
Union of this and rhs bounding-boxes.
Definition: vmath.h:3992
T length() const
Get length of vector.
Definition: vmath.h:976
T data[9]
Data stored in column major order.
Definition: vmath.h:1623
T w
Real part of quaternion.
Definition: vmath.h:2956
Vector4< T > & operator*=(T rhs)
Multiplication operator.
Definition: vmath.h:1473
T lengthSq() const
Return square of length.
Definition: vmath.h:988
void normalize()
Normalize vector.
Definition: vmath.h:996
Aabb3< T > extended(const Aabb3< SrcT > &box) const
Gets a copy of this bounding-box extnended by box box.
Definition: vmath.h:3773
Vector3< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:876
static Matrix4< T > createFrustum(T left, T right, T bottom, T top, T zNear, T zFar)
Creates OpenGL compatible perspective projection according specified frustum parameters.
Definition: vmath.h:2307
void extend(const Aabb3< SrcT > &box)
Extends this bounding-box by a box box.
Definition: vmath.h:3740
Class for matrix 3x3.
Definition: vmath.h:1619
bool operator!=(const Vector2< T > &rhs) const
Inequality test operator.
Definition: vmath.h:460
T x
Definition: vmath.h:1121
Vector3< double > Vector3d
Three dimensional Vector of doubles.
Definition: vmath.h:1091
Quaternion(T w_, T x, T y, T z)
Creates quaternion object from value (w_ + xi + yj + zk).
Definition: vmath.h:3004
Matrix4< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:2669
Quaternion class implementing some quaternion algebra operations.
Definition: vmath.h:2950
const T & at(int x, int y) const
Get constant reference to element at position (x,y).
Definition: vmath.h:2494
Matrix3(const Matrix3< T > &src)
Copy constructor.
Definition: vmath.h:1648
T s
First element of vector, alias for S-coordinate.
Definition: vmath.h:603
Vector2< T > & operator=(const Vector2< T > &rhs)
Copy operator.
Definition: vmath.h:243
Matrix3< T > & operator=(const T *rhs)
Copy operator.
Definition: vmath.h:1871
Vector2(const Vector2< FromT > &src)
Copy casting constructor.
Definition: vmath.h:221
Matrix4< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:2681
bool operator!=(const Aabb3< RhsT > &rhs) const
Tests if rhs is not equal to this bounding-box.
Definition: vmath.h:3935
Matrix3< T > operator+(const Matrix3< T > &rhs) const
Addition operator.
Definition: vmath.h:1888
STL namespace.
Matrix4< T > inverse()
Computes inverse matrix.
Definition: vmath.h:2795
bool operator==(const Quaternion< T > &rhs) const
Equality test operator.
Definition: vmath.h:3126
T & operator()(int i, int j)
Get reference to element at position (i,j), with math matrix notation.
Definition: vmath.h:1824
T length() const
Get length of vector.
Definition: vmath.h:1500
Aabb3< T > extended(const Vector3< SrcT > &point) const
Gets a copy of this bounding-box extend by a point point.
Definition: vmath.h:3760
Matrix4< T > lerp(T fact, const Matrix4< T > &rhs) const
Linear interpolation of two matrices.
Definition: vmath.h:2875
Vector3< T > operator+(const Vector3< T > &rhs) const
Addition operator.
Definition: vmath.h:755
Vector3(const Vector3< T > &src)
Copy constructor.
Definition: vmath.h:673
Vector2< T > & operator/=(T rhs)
Division operator.
Definition: vmath.h:435
void extend(const Vector3< SrcT > &point)
Extends this bounding-box by a point point.
Definition: vmath.h:3722
Matrix4()
Creates identity matrix.
Definition: vmath.h:2125
Vector2< T > & operator+=(T rhs)
Addition operator.
Definition: vmath.h:402
Quaternion()
Quaternion constructor, sets quaternion to (0 + 0i + 0j + 0k).
Definition: vmath.h:2965
T y
Second element of vector, alias for Y-coordinate.
Definition: vmath.h:1134
Vector2< T > operator+(const Vector2< T > &rhs) const
Addition operator.
Definition: vmath.h:285
static Matrix3< T > fromRowMajorArray(const FromT *arr)
Creates new matrix 3x3 from array that represents such matrix 3x3 as array of tightly packed elements...
Definition: vmath.h:1738
Quaternion< T > & operator+=(const Quaternion< T > &rhs)
Addition operator.
Definition: vmath.h:3078
T det()
Definition: vmath.h:2022
Aabb3(const Vector3< SrcT > &point)
Constructs axes-aligned bound-box containing one point point.
Definition: vmath.h:3647
Vector2()
Creates and sets to (0,0)
Definition: vmath.h:192
bool operator!=(const Matrix3< T > &rhs) const
Inequality test operator.
Definition: vmath.h:1789
bool operator==(const Vector3< T > &rhs) const
Equality test operator.
Definition: vmath.h:946
Vector4(const Vector4< T > &src)
Copy constructor.
Definition: vmath.h:1190
Quaternion< T > operator-() const
Unary negate operator.
Definition: vmath.h:3147
Axes-aligned bounding-box (aka AABB) class.
Definition: vmath.h:3621
Aabb3(const Aabb3< SrcT > &src)
Creates copy of axis-aligned bounding-box.
Definition: vmath.h:3683
Matrix3< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:1937
T z
Third element of vector, alias for Z-coordinate.
Definition: vmath.h:1147
Vector3()
Creates and sets to (0,0,0)
Definition: vmath.h:653
Matrix3< T > lerp(T fact, const Matrix3< T > &rhs) const
Linear interpolation of two matrices.
Definition: vmath.h:2016
Aabb3< double > Aabb3d
Definition: vmath.h:4023
void identity()
Resets matrix to be identity matrix.
Definition: vmath.h:1669
Vector4< float > Vector4f
Three dimensional Vector of floats.
Definition: vmath.h:1606
Matrix3< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:1925
Vector4< T > & operator-=(T rhs)
Subtraction operator.
Definition: vmath.h:1460
Vector2< T > operator-(const Vector2< T > &rhs) const
Subtraction operator.
Definition: vmath.h:294
static Matrix4< T > createScale(T sx, T sy, T sz)
Create scale matrix with sx, sy, and sz being values of matrix main diagonal.
Definition: vmath.h:2244
Vector2< T > & operator*=(T rhs)
Multiplication operator.
Definition: vmath.h:424
Matrix3(const T *dt)
Copy matrix values from array (these data must be in column major order!)
Definition: vmath.h:1639
T b
Third element of vector, alias for B-coordinate.
Definition: vmath.h:646
Matrix4< T > transpose()
Transpose matrix.
Definition: vmath.h:2853
bool intersects(const Vector3< SrcT > &point) const
Tests if the point point is within this bounding-box.
Definition: vmath.h:3786
Vector4< T > & operator-=(const Vector4< T > &rhs)
Subtraction operator.
Definition: vmath.h:1336
std::string toString() const
Gets string representation.
Definition: vmath.h:1596
Vector3< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:885
Vector3< T > operator*(const Vector3< T > &rhs) const
Multiplication operator.
Definition: vmath.h:773
T t
Second element of vector, alias for T-coordinate.
Definition: vmath.h:185
T det()
Computes determinant of matrix.
Definition: vmath.h:2766
Matrix3()
Creates identity matrix.
Definition: vmath.h:1629
T & operator[](int n)
Array access operator.
Definition: vmath.h:721
T a
Fourth element of vector, alias for A-coordinate.
Definition: vmath.h:1156
Matrix4(const Matrix4< FromT > &src)
Copy casting constructor.
Definition: vmath.h:2154
T w
First element of vector, alias for W-coordinate.
Definition: vmath.h:1162
Vector3< T > & operator*=(const Vector3< T > &rhs)
Multiplication operator.
Definition: vmath.h:815
Vector3< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:858
Vector2< T > lerp(T fact, const Vector2< T > &r) const
Linear interpolation of two vectors.
Definition: vmath.h:517
Matrix3< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:1949
Vector4< T > & operator+=(const Vector4< T > &rhs)
Addition operator.
Definition: vmath.h:1323
Vector2< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:375
Class for matrix 4x4.
Definition: vmath.h:2115
T & at(int x, int y)
Get reference to element at postion (x,y).
Definition: vmath.h:2482
Vector2< T > operator/(const Vector2< T > &rhs) const
Division operator.
Definition: vmath.h:312
Vector2< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:384
Matrix4< T > operator*(Matrix4< T > rhs) const
Multiplication operator.
Definition: vmath.h:2742
Vector2< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:393
Vector2< T > & operator+=(const Vector2< T > &rhs)
Addition operator.
Definition: vmath.h:321
void setScale(const Vector3< T > &s)
Sets matrix scale for all axes.
Definition: vmath.h:2592
Quaternion< T > lerp(T fact, const Quaternion< T > &rhs) const
Linear interpolation of two quaternions.
Definition: vmath.h:3321
std::string toString() const
Gets string representation.
Definition: vmath.h:2093
Vector2< T > & operator-=(T rhs)
Subtraction operator.
Definition: vmath.h:413
Matrix3< float > Matrix3f
Matrix 3x3 of floats.
Definition: vmath.h:2102
const T & operator()(int i, int j) const
Get constant reference to element at position (i,j), with math matrix notation.
Definition: vmath.h:2518
Vector3< T > operator/(const Vector3< T > &rhs) const
Division operator.
Definition: vmath.h:782
T b
Third element of vector, alias for B-coordinate.
Definition: vmath.h:1143
void normalize()
Normalize vector.
Definition: vmath.h:488
const T & operator[](int n) const
Array access operator.
Definition: vmath.h:1269
Vector3< T > lerp(T fact, const Vector3< T > &r) const
Linear interpolation of two vectors.
Definition: vmath.h:1037
Quaternion< T > & operator*=(T rhs)
Multiplication operator.
Definition: vmath.h:3112
Quaternion< T > operator*(T rhs) const
Multiplication operator.
Definition: vmath.h:3059
Vector4()
Creates and sets to (0,0,0,0)
Definition: vmath.h:1169
T t
Second element of vector, alias for T-coordinate.
Definition: vmath.h:622
void setRotation(const Matrix3< T > &m)
Sets rotation part (matrix 3x3) of matrix.
Definition: vmath.h:2548
const T & operator[](int n) const
Constant array access operator.
Definition: vmath.h:739
Vector2(T nx, T ny)
Creates and sets to (x,y)
Definition: vmath.h:202
Vector2< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:366
Aabb3< T > operator*(const Matrix4< T > &rhs) const
Gets transformed bounding-box by transform rhs.
Definition: vmath.h:3945
void setTranslation(const Vector3< T > &v)
Sets translation part of matrix.
Definition: vmath.h:2530
Matrix4< int > Matrix4i
Matrix 4x4 of int.
Definition: vmath.h:2940
Vector3< T > & operator+=(const Vector3< T > &rhs)
Addition operator.
Definition: vmath.h:791
void setScale(T sx, T sy, T sz)
Sets matrix scale for all axes.
Definition: vmath.h:2581
Class for four dimensional vector.
Definition: vmath.h:1107
Quaternion< T > operator+(const Quaternion< T > &rhs) const
Addition operator.
Definition: vmath.h:3036
Quaternion< T > & operator-=(const Quaternion< T > &rhs)
Subtraction operator.
Definition: vmath.h:3089
Aabb3()
Constructs invalid axes-aligned bounding-box.
Definition: vmath.h:3638
Vector4< T > operator-(const Vector4< T > &rhs) const
Subtraction operator.
Definition: vmath.h:1296
#define EPSILON
Definition: vmath.h:144
Matrix4< T > & operator=(const T *rhs)
Copy operator.
Definition: vmath.h:2627
const T & operator[](int n) const
Constant array access operator.
Definition: vmath.h:271
T r
First element of vector, alias for R-coordinate.
Definition: vmath.h:609
Vector3< float > Vector3f
Three dimensional Vector of floats.
Definition: vmath.h:1089
Vector2(const Vector2< T > &src)
Copy constructor.
Definition: vmath.h:211
Class for two dimensional vector.
Definition: vmath.h:157
T lengthSq() const
Return square of length.
Definition: vmath.h:3177
Aabb3< T > & operator*=(const Matrix4< T > &rhs)
Apply transform rhs to this bounding-box.
Definition: vmath.h:3955
Matrix3(const Matrix3< FromT > &src)
Copy casting constructor.
Definition: vmath.h:1658
Vector4(T nx, T ny, T nz, T nw)
Creates and sets to (x,y,z,z)
Definition: vmath.h:1181
Matrix4< float > Matrix4f
Matrix 4x4 of floats.
Definition: vmath.h:2936
Quaternion< T > & operator*=(const Quaternion< T > &rhs)
Multiplication operator.
Definition: vmath.h:3100
Quaternion< T > & operator=(const Quaternion< T > &rhs)
Copy operator.
Definition: vmath.h:3013
void identity()
Resets matrix to be identity matrix.
Definition: vmath.h:2165
T y
Second element of vector, alias for Y-coordinate.
Definition: vmath.h:617
Vector3< T > getScale() const
Gets matrix scale.
Definition: vmath.h:2563
static Matrix3< T > fromOde(const It *mat)
Creates rotation matrix from ODE Matrix.
Definition: vmath.h:1718
Vector4(const Vector3< T > &src, T w)
Definition: vmath.h:1205
class Vector2< double > Vector2d
Two dimensional Vector of doubles.
Definition: vmath.h:572
static Quaternion< T > fromEulerAngles(T x, T y, T z)
Creates quaternion for eulers angles.
Definition: vmath.h:3199
Vector3< T > operator=(const Vector3< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:706
Matrix4< T > operator+(const Matrix4< T > &rhs) const
Addition operator.
Definition: vmath.h:2644
Vector3< T > operator-() const
Unary negate operator.
Definition: vmath.h:966
T x
First element of vector, alias for X-coordinate.
Definition: vmath.h:165
Vector3< T > crossProduct(const Vector3< T > &rhs) const
Cross product operator.
Definition: vmath.h:848
Matrix3< T > & operator=(const Matrix3< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:1858
class Vector2< int > Vector2i
Two dimensional Vector of ints.
Definition: vmath.h:574
Matrix3< T > rotMatrix()
Converts quaternion into rotation matrix.
Definition: vmath.h:3223
Vector3< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:867
Matrix4< T > & operator=(const Matrix4< T > &rhs)
Copy operator.
Definition: vmath.h:2603
Matrix3< int > Matrix3i
Matrix 3x3 of int.
Definition: vmath.h:2106
const T & at(int x, int y) const
Get constant reference to element at position (x,y).
Definition: vmath.h:1812
Matrix4< T > & operator=(const Matrix4< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:2614
Matrix3< T > & operator=(const Matrix3< T > &rhs)
Copy operator.
Definition: vmath.h:1847
Vector4< T > & operator/=(const Vector4< T > &rhs)
Division operator.
Definition: vmath.h:1362
Vector2< T > operator*(const Vector2< T > &rhs) const
Multiplication operator.
Definition: vmath.h:303
class Vector2< float > Vector2f
Two dimensional Vector of floats.
Definition: vmath.h:570
Quaternion(const Quaternion< T > &q)
Copy constructor.
Definition: vmath.h:2973
const double epsilon
Definition: vmath.h:143
static Matrix4< T > fromColumnMajorArray(const FromT *arr)
Creates new matrix 4x4 from array that represents such matrix 4x4 as array of tightly packed elements...
Definition: vmath.h:2435
T z
Third element of vector, alias for Z-coordinate.
Definition: vmath.h:635
Vector3< T > operator-(const Vector3< T > &rhs) const
Subtraction operator.
Definition: vmath.h:764
void rotate(T ax, T ay, T az)
Rotate vector around three axis.
Definition: vmath.h:1011
Vector4< T > operator*(const Vector4< T > &rhs) const
Multiplication operator.
Definition: vmath.h:2718
Vector3< T > & operator*=(T rhs)
Multiplication operator.
Definition: vmath.h:918
Vector4< T > lerp(T fact, const Vector4< T > &r) const
Linear interpolation of two vectors.
Definition: vmath.h:1539
Quaternion< T > operator*(const Quaternion< T > &rhs) const
Multiplication operator.
Definition: vmath.h:3046
bool operator!=(const Matrix4< T > &rhs) const
Inequality test operator.
Definition: vmath.h:2471
Vector4< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:1438
void setScale(T s)
Sets matrix uniform scale values.
Definition: vmath.h:2570
T s
First element of vector, alias for S-coordinate.
Definition: vmath.h:171
std::string toString() const
Gets string representation.
Definition: vmath.h:3338
Class for three dimensional vector.
Definition: vmath.h:588
VEC2< T > max(const VEC2< T > &a, const VEC2< T > &b)
Gets vector containing maximal values of a and b coordinates.
Definition: vmath.h:3568
static Matrix4< T > createTranslation(T x, T y, T z, T w=1)
Creates translation matrix.
Definition: vmath.h:2225
Vector4< T > operator=(const Vector4< T > &rhs)
Copy operator.
Definition: vmath.h:1219
Vector4< T > operator/(const Vector4< T > &rhs) const
Division operator.
Definition: vmath.h:1314
T & at(int x, int y)
Get reference to element at position (x,y).
Definition: vmath.h:1800
Vector3(const Vector3< FromT > &src)
Copy casting constructor.
Definition: vmath.h:683
Vector2< T > & operator-=(const Vector2< T > &rhs)
Substraction operator.
Definition: vmath.h:332
Vector3< T > point(size_t i) const
Gets all 8 corner-points of bounding box.
Definition: vmath.h:3892
static Matrix4< T > createRotationAroundAxis(T xDeg, T yDeg, T zDeg)
Creates rotation matrix by rotation around axis.
Definition: vmath.h:2177
T g
Second element of vector, alias for G-coordinate.
Definition: vmath.h:1130
Vector4(const Vector3< FromT > &src, FromT w)
Definition: vmath.h:1210
Vector4< T > & operator/=(T rhs)
Division operator.
Definition: vmath.h:1486
Vector3< T > operator*(const Vector3< T > &rhs) const
Multiplication operator.
Definition: vmath.h:2731
bool operator!=(const Vector4< T > &rhs) const
Inequality test operator.
Definition: vmath.h:1390
Quaternion< T > & operator=(const Quaternion< FromT > &rhs)
Copy convert operator.
Definition: vmath.h:3025
Matrix4< T > transform() const
Converts quaternion into transformation matrix.
Definition: vmath.h:3272
Vector3< T > & operator/=(T rhs)
Division operator.
Definition: vmath.h:930
Vector4< T > operator+(T rhs) const
Addition operator.
Definition: vmath.h:1411
T dotProduct(const Vector3< T > &rhs) const
Dot product of two vectors.
Definition: vmath.h:839
Vector3< T > operator=(const Vector3< T > &rhs)
Copy operator.
Definition: vmath.h:693
void normalize()
Normalize quaternion.
Definition: vmath.h:3185
void normalize()
Normalize vector.
Definition: vmath.h:1508
Vector4< T > operator-() const
Unary negate operator.
Definition: vmath.h:1400
static Matrix4< T > createOrtho(T left, T right, T bottom, T top, T zNear, T zFar)
Creates OpenGL compatible orthographic projection matrix.
Definition: vmath.h:2366
T & operator[](int n)
Array access operator.
Definition: vmath.h:256
Matrix3< T > operator*(Matrix3< T > rhs) const
Multiplication operator.
Definition: vmath.h:1973
Vector4(const Vector4< FromT > &src)
Copy casting constructor.
Definition: vmath.h:1200
Quaternion< T > operator-(const Quaternion< T > &rhs) const
Subtraction operator.
Definition: vmath.h:3068
bool operator==(const Vector2< T > &rhs) const
Equality test operator.
Definition: vmath.h:450
static Quaternion< T > fromAxisRot(Vector3< T > axis, float angleDeg)
Creates quaternion as rotation around axis.
Definition: vmath.h:3211
Vector3< T > getTranslation() const
Definition: vmath.h:2538
Vector4< T > & operator+=(T rhs)
Addition operator.
Definition: vmath.h:1447
Aabb3(SrcT x0, SrcT y0, SrcT z0, SrcT x1, SrcT y1, SrcT z1)
Constructs axes-aligned bounding-box form two corner points (x0, y0, z0) and (x1, y1...
Definition: vmath.h:3662
bool operator==(const Matrix3< T > &rhs) const
Equality test operator.
Definition: vmath.h:1774
bool operator!=(const Vector3< T > &rhs) const
Inequality test operator.
Definition: vmath.h:956
Vector2< T > & operator*=(const Vector2< T > &rhs)
Multiplication operator.
Definition: vmath.h:343
Vector4< T > operator+(const Vector4< T > &rhs) const
Addition operator.
Definition: vmath.h:1287
T & operator[](int n)
Array access operator.
Definition: vmath.h:1249
Quaternion(T w_, const Vector3< T > &v_)
Creates quaternion object from real part w_ and complex part v_.
Definition: vmath.h:2992
Vector2< T > & operator=(const Vector2< FromT > &rhs)
Copy casting operator.
Definition: vmath.h:232
void invalidate()
Makes this bounding-box invalid.
Definition: vmath.h:3714
T & operator()(int i, int j)
Get reference to element at position (i,j), with math matrix notation.
Definition: vmath.h:2506
Vector4< T > operator-(T rhs) const
Subtraction operator.
Definition: vmath.h:1420
T length() const
Get length of vector.
Definition: vmath.h:480
std::string toString() const
Gets string representation.
Definition: vmath.h:2926
Vector3< T > & operator-=(const Vector3< T > &rhs)
Subtraction operator.
Definition: vmath.h:803
Vector2< T > operator-() const
Unary negate operator.
Definition: vmath.h:470
static Matrix4< T > createLookAt(const Vector3< T > &eyePos, const Vector3< T > &centerPos, const Vector3< T > &upDir)
Creates new view matrix to look from specified position eyePos to specified position centerPos...
Definition: vmath.h:2261
Vector4< T > operator*(const Vector4< T > rhs) const
Multiplication operator.
Definition: vmath.h:1305
#define DEG2RAD(x)
Definition: vmath.h:140
Matrix4< T > operator/(T rhs) const
Division operator.
Definition: vmath.h:2705
Vector3< int > Vector3i
Three dimensional Vector of ints.
Definition: vmath.h:1093
Vector3(T nx, T ny, T nz)
Creates and sets to (x,y,z)
Definition: vmath.h:664
VEC2< T > min(const VEC2< T > &a, const VEC2< T > &b)
Gets vector containing minimal values of a and b coordinates.
Definition: vmath.h:3538
T g
Second element of vector, alias for G-coordinate.
Definition: vmath.h:627
Quaternion< float > Quatf
Definition: vmath.h:3503
Quaternion< T > operator~() const
Unary conjugate operator.
Definition: vmath.h:3156
Vector3< T > size() const
Gets diagonal size of bounding-box.
Definition: vmath.h:3874
Aabb3< T > intersection(const Aabb3< SrcT > &other) const
Gets result of intersection of this bounding-box with other bounding-box.
Definition: vmath.h:3840
Vector3< T > & operator-=(T rhs)
Subtraction operator.
Definition: vmath.h:906
static Quaternion< T > fromMatrix(const Matrix3< T > &m)
Creates quaternion from rotation matrix.
Definition: vmath.h:3411
Vector3< T > extent() const
Gets extent of bounding-box.
Definition: vmath.h:3867
Aabb3< float > Aabb3f
Definition: vmath.h:4022
Vector3< T > max
Position of Max corner of bounding box.
Definition: vmath.h:3632